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Abstract

The first two chapters of this thesis focus on the operation of rental businesses, which
provides a novel and increasingly significant application of a supply chain and service oper-
ation. According to IBISWorld industry reports, at least fifteen different rental industries
in the United States have annual revenues exceeding $1 billion. Furthermore, the consumer
trend of “access over ownership” has spurred the creation of new and disruptive business
models such as Rent the Runway, which rents designer dresses by mail to over 2 million
users. However, existing operations management literature offers little support to rental
operations subject to complex demand characteristics and the loss of rental units due to
customer damage or purchase.

Motivated by new and innovative rental business models, we study the operation of a
rental system with random loss of inventory due to customer use. We use a discrete-time
model in which the inventory level is chosen before the start of a finite rental season, and
customers not immediately served in each period are lost. Demand, rental durations, and
rental unit lifetimes are stochastic, and sample path coupling allows us to derive structural
results that hold under limited distributional assumptions. Considering different “recircu-
lation” rules — i.e., which rental unit to choose to meet each demand — we prove the
concavity of the expected profit function and identify the optimal recirculation rule under
two different models of a rental unit’s state: the number of times rented out or its condition.
A numerical study clarifies when considering rental unit loss and recirculation rules matters
most for the inventory decision: Accounting for rental unit loss can increase the expected
profit by 7% for a single season and becomes even more important as the time horizon
lengthens. We also observe that the optimal inventory level in response to increasing loss
probability is non-monotonic. Finally, we show that choosing the optimal recirculation rule
over a commonly used policy suggests that more rental units should be added, and the
profit-maximizing service level increases by up to six percentage points.

The second chapter extends our rental model to include the problem of admission control
through accepting and rejecting reservation requests. We use a stochastic model of a rental
operation to study the problem of whether the firm should accept each reservation request
over the course of a rental season. In our model, the firm must balance a desire to serve
more customers, thereby achieving a higher utilization of its rental assets, with the risk
of being unable to serve a reservation that was previously accepted. Service variability
is considered through using exponentially distributed service times, and each acceptance
decision is made only with knowledge of the number of rental units that are currently
busy and the list of accepted reservation requests. We discuss challenges in proving the
optimal policy for admitting reservations, and propose an easy-to-implement newsvendor-
style heuristic for accepting reservations. We show that the heuristic and two extensions
perform well for test cases motivated by three different rental businesses, and compare its
performance to bounds and simple heuristics. Furthermore, numerical results reveal that
increasing the notice time — i.e., the time between when customers make a reservation
request and service begins — decreases the expected profit.
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The third chapter of the thesis addresses both strategic and tactical policy questions
for the operation of a statewide adoption network, which matches children in state custody
with prospective adoptive families. The Pennsylvania Adoption Exchange (PAE) helps
case workers who represent children in state custody by recommending prospective families
for adoption. We describe PAE’s operational challenges using case worker surveys and
analyze child outcomes through a regression analysis of data collected over multiple years.
A match recommendation spreadsheet tool implemented by PAE incorporates insights from
this analysis and allows PAE managers to better utilize available information. Using a
discrete-event simulation of PAE, we justify the value of a statewide adoption network and
demonstrate the importance of better information about family preferences for increasing
the percentage of children who are successfully adopted. Finally, we detail a series of simple
improvements that PAE achieved through collecting more valuable information and aligning
incentives for families to provide useful preference information.
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Chapter 1

Introduction

In this thesis, we study two innovative service operations. In the next two chapters, we
use classical methods from stochastic inventory theory to study a relatively new class of
business models, online rental operations. In Chapter 4, we utilize the relatively new field
of market design to study the ancient practice of child adoption.

1.1 Rental Business Models

Advances in online commercial models have produced a new generation of innovative busi-
nesses built upon renting goods. For an increasing variety of products, the promise of
flexibility and affordability has led to rental businesses specializing in just about every as-
pect of our business and personal lives. Besides traditional rental products such as movies,
cars, and hotel rooms, less common goods available to rent range from bicycles to jets, cribs
to coffins, and furniture to camping gear. According to IBISWorld industry analysts, the
annual revenue of fifteen different rental industries in the United States each exceeded $1
billion in 2013, while the annual revenue of each of the car, heavy equipment, and industrial
equipment rental industries surpassed $25 billion.

Asking “Is Owning Overrated?,” some commentators have connected the rise of the
rental economy to a “a growing, post-recession movement to value experiences over pos-
sessions.(Miller 2014)” Technological advances have allowed online startups to efficiently
rent items from their own inventory or serve as middlemen to connect owners and renters.
Luxury goods have received particular attention as fertile ground for rental businesses that
make those goods available to new customer classes. For example, Rent the Runway is a
company that allows customers to rent high-fashion dresses for either four or eight days at
approximately 10% of the retail price of a dress (Wortham 2009). Customers can view the
selection of dresses and their availability through a website, and receive style and fit advice
from Rent the Runway consultants and customer reviews. Dresses are shipped to customers
and returned by mail.

The unique characteristics of rental inventory problems provide three additional chal-
lenges beyond traditional inventory problems:

1. Each unit of inventory must be tracked over time as service begins and completes for
each customer. If subject to variability in the service duration or return time, the

1
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rental unit return process introduces supply-side uncertainty.

2. Individual rental units may have qualities that evolve over time, and it may be valuable
to manage which rental units are assigned to which customers.

3. Customers tend to be time-sensitive if their demand is tied to a specific calendar
event, which motivates a lost sales model and introduces reservations as a means for
customers to have greater certainty that their demand is fulfilled.

Chapters 2 and 3 of this thesis study important decisions that must be made before and
during the rental season, respectively. In Chapter 2, we consider the critical decision regard-
ing the number of dresses that will comprise Rent the Runway’s seasonal rental inventory
and how the loss of rental units during the season interacts with the inventory decision. This
decision must be made shortly after pre-season fashion shows, which are several months in
advance of the rental season (Binkley 2011). In Chapter 3, we introduce reservations to our
model so that demand is known in advance of the service start time. Chapter 3 focuses on
the admission decision; i.e., whether each reservation should be accepted or rejected.

1.2 Child Adoptions

According to the most recent report of the Children’s Bureau of the US Department of
Health and Human Services (2014), approximately 397,000 children in the United States
are living in the foster care system, with 102,000 of them waiting for adoptive placement.
In 2012, while 50,000 children were successfully adopted from foster care, approximately
23,000 were discharged due to emancipation as they reached the age of 18 without receiving a
permanent home. As cataloged by Howard and Brazin (2011), numerous studies have shown
that children who spend significant time in foster care or “age out” of foster care without
finding a permanent family suffer from alarming levels of unemployment, homelessness, early
parenthood, and incarceration. For example, Reilly (2003) reports that 41% of respondents
between the ages of 18 and 25 who had aged out of the foster care system have spent time
in jail. Dworsky and Courtney (2010) also find that 53% of females who had exited foster
care had experienced at least one pregnancy by the age of 19, which is more than double
the rate of 20% by the age of 19 for females in the general population.

Despite the growing prominence and urgency of finding families for children in state cus-
tody, little is known about how to define, analyze, and improve the family finding process.
The fundamental supply-and-demand imbalance for children of different demographic char-
acteristics was first described using an economics framework by Landes and Posner (1978).
An empirical study by Baccara et al. (2014) identifies biases in preferences of prospective
adoptive families for infant adoption. They show that an adopted child’s desirability to
prospective families depends heavily on the child’s age, gender, and race, with some of the
greatest disparities accounted for by the child’s race. Hanna and McRoy (2011) characterize
the goals of the matching process and document tools to assess the quality of a family-child
match that other governmental and nonprofit organizations have developed concurrent to
our efforts.

2
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1.3 Thesis Contributions and Outline

Relatively little work has focused on the management of inventory for rental businesses,
and Chapters 2 and 3 of this thesis address fundamental elements of rental systems that
have not previously received attention. In Chapter 2, we study usage-based loss in which
rental units retire from circulation (i.e., due to damage or customer purchase) and provide
structural results for the relationship between the profit and initial inventory level. When
rental units have an increasing failure rate over a finite horizon, the rules for allocating
rental units to customers must be specified, and we demonstrate the optimal recirculation
rule. Finally, numerical results show the value of accounting for these model elements in
practice.

In Chapter 3, we are the first to study admission control for customers requesting
reservations in a rental model with stochastic service times. We discuss this model and
its properties to show difficulties in obtaining structural results. We provide bounds for the
profit and show properties of simple heuristics. Based on insights from this analysis and
numerical results, we develop more advanced heuristics that perform well compared to an
optimal upper bound for known arrival epochs.

In Chapter 4, we are the first to study child welfare processes from an operations man-
agement or market design perspective. We characterize the system’s operations and the
challenges that it faces, as well as simple improvements implemented by a statewide adop-
tion network. We use case worker surveys to identify challenges and receptiveness to im-
provements to a match suggestion algorithm used to find families for a child in state custody.
Analysis of child outcome data over multiple years helps to classify factors affecting a child’s
chances of a successful adoption and guides weights used in the match suggestion algorithm.
A discrete-event simulation indicates the value of a statewide network compared to counties
operating in isolation and motivates the need to collect additional information that man-
agers believe would be valuable for predicting whether a match would be successful. Finally,
we describe changes implemented to the matching algorithm to reduce families’ incentives
to overstate the types of children that would be acceptable.

We conclude with a summary of insights for these three chapters in Chapter 5. We also
discuss future work related to rental systems and child adoptions, as well as an application
that combines capacity planning and non-profit operations management.

3
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Chapter 2

Managing Rentals with
Usage-Based Loss

With Bahar Biller and Sridhar Tayur

2.1 Introduction

Choosing the number of rental units to procure before the start of a rental season without
the possibility of replenishment during the season is an important problem that many
rental businesses face. For online start-up businesses, how efficiently the capital-intensive
rental inventory is managed influences the need to raise additional capital and determines
key metrics (e.g., the average number of rental cycles that can be performed by each rental
unit) presented to potential investors. The availability of inventory can affect the reputation
of the rental service and customer retention rates, and failing to rent to a customer because
the rental unit was damaged by a previous customer can result in a challenging customer
service encounter. Furthermore, inventory management that accounts for loss relates to key
strategic decisions. For example, Rent the Runway has recognized its laundry operation
as a core competency and brought it in-house. Also, while customers may not purchase
the high-fashion dresses at the end of a rental, the company has introduced a subscription
rental service that allows customer to buy other clothing items instead of returning them.

Despite the seemingly fundamental nature of this problem, operations management
literature offers very little analytical support when lost sales and discrete time periods —
natural assumptions for many rental systems — are considered. In this chapter, we analyze a
single-product rental system using a discrete-time framework. We focus on the usage-based
loss of rental units over a finite rental horizon during which no additional rental units may
be ordered, e.g., when long procurement lead times or high administrative costs prohibit
in-season reordering. In particular, we consider each rental unit to have a random lifetime,
which is characterized by a general probability distribution on the number of times the unit
can be rented before its retirement from the rental inventory. Our goal is to understand the
role of this uncertainty arising from the usage-based loss of rental units on the management
of rental inventory.

In addition to Rent the Runway, whose dresses are susceptible to both destructive inci-

4
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dents and wearing out over time, other rental systems face the challenge of losing inventory
that can be difficult to replace in the middle of the rental season. For example, a Paris-
based bicycle sharing program that began with 20,600 bicycles in 2007 had more than 8,000
bikes stolen and another 8,000 bikes severely damaged and in need of replacement within
two years (Erlanger and De La Baume 2009). Inventory loss can also occur when cus-
tomers exercise an option to purchase a product. Users of Redbox, an automated movie
and game rental kiosk, rent a DVD for $1.50 a day. If the DVD is not returned in 17
days, then the customer pays $25.50 for the accrued daily rental charge and owns the DVD.
Another example is Rent-A-Center, a company with over $3 billion in revenue in 2012 and
which rents furniture, appliances and electronics to customers who can own the item if it
is rented beyond a certain duration. In its 2012 annual report, Rent-A-Center states that
approximately 25% of its rental agreements result in customer ownership.

Existing work supporting capacity planning for rental businesses relies primarily on
queueing models. Although Poisson or compound Poisson arrival processes may adequately
represent demands for some rental businesses, better choices may exist for modeling demand
in rental systems characterized by discrete rental time slots. For example, business travelers
occupy a hotel room for a discrete number of days and are more likely to begin renting a
hotel room on Monday night than a Saturday night. At Rent the Runway, for example,
whose customers primarily rent dresses for events on Fridays and Saturdays, a discrete-time
demand model with a period of one week more accurately represents a customer demand
pattern than a Poisson arrival process. Therefore, extending the discrete-time inventory
theory to include loss of rental inventory offers an advantage for a rental system like Rent
the Runway. We develop a model that makes no distributional assumptions and captures
(a) operational details such as random rental unit lifetimes (with constant, increasing or
decreasing failure rates) and random rental durations, (b) very general demand models with
features such as seasonality, auto-correlations, and forecast uncertainty and (c) recirculation
rules that are used in practice for choosing among available rental units to satisfy demands.

We make the following contributions regarding the inventory management of rental
systems:

1. Model and Framework: To the best of our knowledge, we are the first to consider
the loss of rental units according to distributions over the number of times that each
unit can be rented before loss. Thus, our model includes either a state variable that
represents the number of times that a rental unit has been rented out (i.e., a “count-
based” model) or a state variable that represents a rental unit’s condition (i.e., a
“condition-based” model). It also accommodates an arbitrary demand process and
general distributions for lifetime and duration of each rental unit.

2. Structural Results

(a) We establish the concavity of the expected profit function in the initial inventory
of rental units for geometric lifetime distributions. Not surprisingly, this struc-
tural property holds independent of the rental unit recirculation rule as the loss
probability is constant over time.

(b) For general lifetime distributions, it becomes necessary to consider the recir-
culation rule for allocating rental units to satisfy customer demand for both

5
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count-based or condition-based models.

(c) Count-Based Model: We establish the concavity of the expected profit func-
tion for the “static priority” recirculation rule; i.e., the units to be rented are
prioritized according to a list that does not change over the rental horizon. We
show that the concavity of the expected profit function also holds for a policy
that spreads the rental load evenly over all units, allocating the rental unit that
has been rented out the fewest number of times. Referring to this recirculation
rule as the “even spread” policy, we prove its optimality when rental unit loss
probabilities are non-decreasing in the number of times that the unit has been
rented.

(d) Condition-Based Model: We demonstrate analogous results for the condition-
based model, showing the concavity of the expected profit function for the “best-
first” policy in which the rental unit in the best condition receives the highest
allocation priority. Also, we prove that the best-first policy is optimal when the
state transition probability matrix is totally positive of order 2, a condition that
implies that the rental unit failure rate is increasing as its condition worsens.

3. Managerial Insights from Numerical Study

(a) Failing to account for usage-based loss of rental inventory leads to a significant
reduction in the expected profit. For a 5% probability of loss each time a unit is
rented, we find that ignoring the loss of rental units reduces the expected profit
by 7.3% and 33.0% for a half-year and a full-year rental horizon, respectively.

(b) The optimal response to the increasing loss probability is to first increase the
number of rental units, then decrease the number of rental units and finally
stock zero rental units.

(c) For a rental unit lifetime distribution with increasing loss probability, the rental
unit recirculation rule plays an important role according to the rate at which the
loss probability increases. We focus on the count-based model, as similar results
apply for the condition-based model, and compare the even spread policy to the
static priority recirculation rule. Choosing the even spread policy increases the
optimal initial inventory level with a corresponding increase of up to 6 percentage
points in the profit-maximizing service level.

The remainder of the chapter is organized as follows. Section 2.2 reviews the rental
inventory management literature. Section 2.3 introduces our rental inventory model. We
establish the structural properties of this model for geometric lifetime distributions in Sec-
tion 2.4 and for general lifetime distributions in Section 2.5, where we further identify the
optimal rental unit recirculation rule under certain conditions. The numerical analysis fol-
lows in Section 2.6. We conclude with a summary of findings in Section 2.7. All proofs
appear in Appendix A.
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2.2 Literature Review

Early research on rental inventory management exclusively uses queueing models as a foun-
dation for analysis. The initial advances in queueing theory by Takács (1962) and Riordan
(1962) for the telephone trunking problem — finding the stationary probabilities of a multi-
server pure loss system — have sparked two seminal papers on the problem of sizing a fleet
of rental equipment. Tainiter (1964) formulates an optimization problem for M/G/c/c and
G/M/c/c rental systems based on the limiting distributions of the system states derived by
Takács (1962). The decision variable is the capacity of the rental system and the problem
is studied both asymptotically and over a finite horizon. Whisler (1967), on the other hand,
shows that the optimal policy structure for a rental system with lost sales, periodic reorder-
ing, and nonstationary state transition probabilities — as in Riordan (1962) — has upper
critical values above which inventory should be discarded and lower critical values below
which inventory should be ordered. Our work differs from these studies by its focus on the
inventory decision prior to the rental season, the challenge of handling random usage-based
loss of rental units and stochastic rental duration, and the use of a discrete-time model for
demand representation.

The early research on rental inventory management with lost sales is followed by an
extensive study of the M/M/c queueing model with backlogged demands. Specifically, the
problem is posed as finding the optimal number of servers to employ in a multi-server
queuing system, where servers represent rental units and service time corresponds to the
rental duration; see Huang et al. (1977), Jung and Lee (1989), Green et al. (2001), and
Zhang et al. (2012). Motivated by the time-specific nature of customers’ rentals, however,
we restrict our focus to lost sales models in this chapter. Table 2.1 compares our rental
inventory model to the other rental inventory models that also make the assumption of
lost sales. In addition to the continuous-time rental inventory models of Tainiter (1964)
and Whisler (1967) tabulated here, Papier and Thonemann (2008) build on the M/M/c/c
queueing model in Harel (1988), where approximations, as well as lower and upper bounds,
are developed for the lost sales rate as a function of the system capacity. Extending this
model to account for a compound Poisson arrival process, Papier and Thonemann (2008)
conduct a stationary queueing analysis to obtain structural results for a fleet sizing problem
and provide an approximation suitable for implementation. Adelman (2008) also uses an
approximation of the M/M/c/c or M/G/c/c queueing model to study the capacity decision
for a rental system. However, our work is different from this stream of research by our
consideration of a discrete-time rental model with a finite rental season, random usage-
based inventory loss, and an arbitrary demand model possessing the ability to capture any
distributional characteristic.

In contrast to the continuous-time queueing models, Cohen et al. (1980) use a discrete-
time model to represent a return process to a blood bank with the goal of determining an
optimal order-up-to level in every period. Reflecting hospitals’ tendency to order signifi-
cantly more units of blood than needed, a constant percentage of the quantity rented by
hospitals is returned to the blood bank and the rest is consumed after a rental duration
of a fixed number of periods. A constant percentage of the inventory leftover at the blood
bank is, on the other hand, considered to have decayed. The problem of finding the optimal
inventory level under a periodic review policy is formulated as a dynamic program and an

7



www.manaraa.com

Table 2.1: Comparison of lost sales rental inventory models.

Taniter (1964) Whisler (1967)
Papier and 

Thonemann (2008) Cohen et al. (1980) Baron et al. (2011) Our Paper

Inventory Decision One Time Repeated One Time Repeated One Time One Time

Time Horizon Finite Finite Infinite Finite Finite Finite

Demand Process IID Interarrival Times IID Interarrival Times
Compound Poisson 

Stationary; Also 
Nonstationary

General IID Arbitrary Arbitrary

Rental Duration General IID General IID General IID Deterministic
General IID with a 
Restricted Return 

Process
General IID

Inventory Loss N/A N/A N/A Constant Decay N/A Usage-Based       
Random  Loss

CONTINUOUS TIME DISCRETE TIME

approximate solution is provided. In comparison, we examine the one-time pre-seasonal
ordering problem and consider the loss of inventory as random, instead of being a con-
stant proportion. Furthermore, we do not require the assumption of an independent and
identically distributed demand process, and we allow randomness in the rental duration.

Closest to our model is Baron et al. (2011), who determine the optimal pre-season order
quantity for a video rental store with lost sales but no inventory loss. In particular, Baron
et al. (2011) consider a return process that is monotone; i.e., the percentage of the rental
units rented in period t and returned by period n is always greater than or equal to the
percentage of the units rented in period t + 1 and returned by the same period n. The
key result is the concavity of the expected number of rentals in the number of rental units
procured. We are, on the other hand, the first to establish this result for a rental system
with random usage-based inventory loss. We also address the issue of rental unit inventory
allocation, which arises only in our rental inventory model as a result of accounting for
random lifetimes of the rental units.

While we focus on allocating rental units based on their state, others focus on allocation
policies for choosing among different customers based on customer class. Miller (1969)
analyzes the admission decision to an Erlang loss queue when customers belong to classes
based on the revenue received through service, and Savin et al. (2005) show the impact
of the class-based allocation policies on the optimal fleet size. Papier and Thonemann
(2010) and Levi and Shi (2011) build on this model to consider customers that request
reservations in advance. Gans and Savin (2007) consider how to price admission to the
queue, and Tang and Deo (2008) study the pricing decision when customers have uncertain
return times. How to prioritize rental customers who pay a monthly rental subscription fee
and are heterogenous in their rental duration is also the subject of research by Bassamboo
et al. (2009) and Jain et al. (2015).

To analyze models in which rental unit lifetimes do not follow a geometric distribution,
we use sample path analysis in a very general setting to prove the two main results of our
work: the concavity of the expected profit function and the optimal rental unit recirculation
rule. This approach has been used in various settings to model complexities of production
and inventory systems. Examples include the number of customers and their utilities for
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a model with dynamic substitution by Mahajan and van Ryzin (2001) and the processing
times for multi-station production lines by Muth (1979) and Tayur (1993). Also, our proofs
of concavity bear similarities to that of Shanthikumar and Yao (1987) in their study of
systems with multi-server stations.

2.3 Rental Model: A Sample Path Approach

In this section, we describe a sample path approach to modeling a rental inventory system
that allows us to analyze the system — including rules for recirculating rental units — under
general assumptions about the demand process. Motivated by the problem of selecting
the number of rental units to procure before the start of a finite rental season, we begin
our analysis with the following two-stage model of a single-product, discrete-time rental
inventory system with lost sales. In the first stage, the size of the rental inventory is chosen
to be y. Each rental unit is procured before the start of the season and has a value at the
end of the rental season that depends on whether the rental unit retires from the inventory
before the end of the season. A rental unit’s retirement from inventory may decrease the
salvage value due to damage or may increase its value if it is sold to a customer (or if a
penalty is charged to the customer.) Hence, the unit procurement cost accounts for not just
the purchase price, but is adjusted to also include the salvage value for a dress in “good”
condition and the cost of holding the item for the duration of the rental season. In the
second stage, demands occur over N periods and the units purchased in the first stage are
rented to satisfy the customer demands. Each customer is assumed to rent a single unit,
and for simplicity we begin by considering the case in which each rental lasts for a random
duration before considering a model with random rental duration. Thus, if the duration
of some rental is a periods, fulfilling the demand requires that one unit of the inventory
is withdrawn for the period in which the demand is received and for the a − 1 succeeding
periods.

A critical aspect of rental inventory planning is to account for the loss of rental units.
Misuse by customers, customer options to purchase rented items or simply the deterioration
of the rental unit’s quality over time present reasons for why a unit would be retired from
the rental inventory.

The duration of each customer rental is a random variable denoted by Am,i. We define
its realization am,i over rental unit m’s lifetime as the rental duration for the ith demand
served for i ≥ 1 and m = 1, 2, . . . , y. Each rental lasts for any number of periods between
a minimum of Amin and a maximum of Amax; i.e., am,i ∈ {Amin, Amin + 1, . . . , Amax}.
We assume that Am,i is independent and identically distributed according to a general
probability mass function characterized by hA := P{A = a}, a = Amin, Amin + 1, . . . , Amax.

Each rental unit fails after a random number of rentals (i.e., its “lifetime” lm), with a
loss probability fi,a corresponding to the ith rental served by unit m and a rental duration a.
Upon completion of its lmth rental, unit m satisfies no further demands, although it might
still have a salvage value that is earned at the end of the horizon or other reward in the
event of loss due to customer purchase. The marginal lifetime distribution `i = Pr(lm = i)
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can then be defined recursively as

`i =

1−
i−1∑
j

`j

 Amax∑
a=Amin

hafi,a.

We note that our model accommodates correlation between the loss probability and the
duration of each rental.

Demand dn is received in period n ∈ {1, 2, . . . , N}. Taken together, the demands
d1, d2, . . . , dN and the rental unit lifetimes l1, l2, . . . , ly comprise a sample path, which we
denote by ξ; i.e., ξ = {d1, d2, . . . , dN , l1, l2, . . . , ly}. When rental unit loss probabilities
change based on the number of times rented, we must also specify the recirculation rule γ
to fully characterize the system’s operation. The recirculation rule determines which rental
unit is chosen given a set of available rental units for each customer served, and may affect
the system’s profit by changing the pattern at which rental units are lost over the rental
horizon.

We use the notation Rγn(y, ξ) for the number of units rented and Lγn(y, ξ) for the number
of sales lost in period n as a function of the initial inventory of y rental units and the sample
path ξ of demands and rental unit lifetimes for a recirculation rule γ. For convenience, the
total number of rentals and lost sales over the entire horizon are defined as Rγ(y, ξ) :=∑N

n=1R
γ
n(y, ξ) and Lγ(y, ξ) :=

∑N
n=1 L

γ
n(y, ξ), respectively. We also let W γ

n (y, ξ) denote
the number of units that are successfully returned to the system in the beginning of period
n and available to be rented again in that period.

Accounting for different possible rental durations, we use Rγa,n(y, ξ) to denote of the
number of rentals of duration a that begin in period n, and Rγa(y, ξ) denote the number
of rentals of duration a that occur over the entire rental horizon. We allow W γ

a,n(y, ξ)
and Zγa,n(y, ξ) to represent the number of rental units returned and lost, respectively, in
period n after a rental duration of a periods with Zγa (y, ξ) :=

∑N+a
n=a+1 Z

γ
a,n(y, ξ). The total

number of rentals in a period that was previously defined can be written as Rγn(y, ξ) :=∑Amax
a=Amin

Rγa,n(y, ξ), with W γ
n (y, ξ) and Zγn(y, ξ) defined analogously. Furthermore, we let

am,i denote the realized rental duration of the ith demand served by the rental unit m. It is
important to note that the sample path ξ now consists of not only the demand realizations
dn, n = 1, 2, . . . , N , and the rental unit lifetimes lm, m = 1, 2, . . . , y, but also the rental
durations am,i, i ≥ 1 and m = 1, 2, . . . , y. To explicitly state the number of lost rental units

in any period, we define Zγn(y, ξ) :=
∑Amax

a=Amin

(
Rγn−a,a(y, ξ)−W γ

n,a(y, ξ)
)

as the number of
rental units that would have been returned in period n but were lost.

The rental system operates for period n of the second stage as follows:

1. Of all the items rented in period n − A, W γ
n (y, ξ) units are returned while Zγn(y, ξ)

retire from the rental inventory. After returns are received but before rentals are made,
the total inventory available to rent out in period n is Iγn(y, ξ) := y−

∑n−1
t=1 R

γ
t (y, ξ)+∑n

t=1W
γ
t (y, ξ).

2. The demand Dn is realized as dn. If dn ≤ Iγn(y, ξ), then dn units are rented out.
Otherwise, Iγn(y, ξ) units are rented out. More succinctly, Rγn(y, ξ) := dn ∧ Iγn(y, ξ),
where a∧ b denotes the minimum of a and b. The rental unit recirculation rule deter-
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(a) Illustration with two rental units (y = 2).
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(b) Effect of number of rental units y.

Figure 2.1: Number of rentals and lost sales for Example 2.1 with a rental duration of two
periods (A = 2).

mines which rental unit is allocated to satisfy each unit of demand, and consequently
determines W γ

n (y, ξ) and Zγn(y, ξ).

3. Excess demand Lγn(y, ξ) := (dn − Iγn(y, ξ))∨0 is lost, where a∨b denotes the maximum
of a and b. This expression can be alternatively written as Lγn(y, ξ) = dγn −Rγn(y, ξ).

Therefore, given the sample path ξ, the dynamics of the rental system’s operation can be
represented recursively as follows, where Iγ0 (y, ξ) = y and Rγt (y, ξ) = 0 for t ≤ 0:

Iγn+1(y, ξ) = Iγn(y, ξ)−Rγn(y, ξ) +W γ
n+1(y, ξ).

Rγn+1(y, ξ) = dn+1 ∧ Iγn+1(y, ξ).

Lγn+1(y, ξ) = dn+1 −Rγn+1(y, ξ).

(2.1)

Example 2.1. Figure 2.1 illustrates an example rental system with a demand sequence
of {d1, . . . , d8} = {1, 0, 2, 0, 3, 1, 2, 1} for eight periods (N = 8). Each rental lasts for a
deterministic two periods; i.e., a unit that is rented in period n will next be available to be
rented again in period n + 2. In this example, we assume that there is no rental unit loss.
Thus, W γ

n (y, ξ) = Rγn−2(y, ξ) and the recirculation rule does not matter, as rental units
have infinite lifetimes. If the system would operate with only one rental unit (i.e., y = 1),
then that unit would be rented in periods 1, 3, 5, and 7 for a total of four rentals, while
six units of the demand would be lost. Figure 2.1a shows how the demand is divided into
rentals and lost sales for a system with y = 2 rental units. Thus, the addition of the second
rental unit allows an additional unit of demand to be satisfied in periods 3, 5, and 7, so that
there are now 7 units of fulfilled demand and 3 units of lost sales. Figure 2.1b shows how
the number of rentals and lost sales change with the number of rental units y. We observe
that the number of rentals is concave in y and that the number of lost sales is convex in
y on this sample path. In other words, the number of additional rentals produced by one
additional rental unit (i.e., the slope of the rentals curve) is decreasing in y.
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As the return process depends on the specific recirculation rule γ, we will describe
W γ
n+1(y, ξ) and Zγn+1(y, ξ) as needed when referring to specific rules. To account for the re-

turn of rental units that are rented in periods N − A + 1, N − A + 2, . . . , N , we define
W γ
N+1(y, ξ),W γ

N+2(y, ξ), . . . , W γ
N+A(y, ξ) as the returns and ZγN+1(y, ξ), ZγN+2(y, ξ), . . . ,

ZγN+A(y, ξ) as the lost units in each of the corresponding periods. The total number of

lost rental units is denoted by Zγ(y, ξ) :=
∑N+A

n=A+1 Z
γ
n(y, ξ).

One way to model rental unit loss is to consider geometrically distributed rental unit
lifetimes. The memorylessness of the geometric distribution leads to a constant probability
of rental unit loss over time. However, if a rental unit does indeed have a higher probability
of wearing out over time, then a rental unit lifetime distribution with an increasing failure
rate (i.e., a loss probability increasing with the number of times the unit has been rented)
would be a suitable choice. Bikes, cars and large equipment are examples of assets for which
an increasing loss probability as a function of the number of rentals could be used to model
the rental unit lifetime. Furthermore, lifetimes that are deterministic — when enforced
by safety regulations that require their disposal after a certain number of uses — can be
analyzed as a special case of an increasing loss probability.

Next, we define the revenues and costs in our models. A reward ra is earned every time
a unit is rented for a duration of a periods, and c is the unit cost of a lost sale. The salvage
value of a rental unit that retires from the rental inventory during the rental season may
differ from the salvage value of a unit that is still functional at the end of the season. The
salvage value only depends on whether the rental unit is lost, and does not depend on the
duration of the rental during which the loss occurred or the number of customers served
before the customer associated with the loss. We separately define the procurement cost
kS for a unit that can be still rented at the end of the rental season (i.e., “survives”) and
the procurement cost kL for a unit that has already retired from circulation (i.e., is “lost”).
The relation kS ≤ kL indicates that the unit retiring from the rental inventory has been
damaged. Hence, it has lost a portion of its value. The relation kS ≥ kL may, on the
other hand, represent the purchase of the rental unit by the customer who is renting it as
discussed in Section 1 for the rental companies Redbox and Rent-A-Center. We note that
this model can also be easily extended to allow for the salvage value as a random variable,
and the results hold using the expected salvage value.

To account for the cost of inventory loss in the objective function of our rental inventory
model, the reduction in the salvage value of a lost rental unit (kL−kS) is multiplied by the
number of lost rental units and subtracted from the revenue as part of the profit function,
which we denote by Πγ(y, ξ). Consequently, we obtain the profit function on any sample
path as follows:

Πγ(y, ξ) =

Amax∑
a=Amin

raRγa(y, ξ)− cLγ(y, ξ)− kSy − (kL − kS)Zγ(y, ξ).

We are now ready to formulate the rental inventory optimization problem as the maximiza-
tion of the expected profit function πγ(y) := E[Πγ(y, ξ)] subject to y ≥ 0. We investigate
the concavity of this expected profit function in the initial inventory of y rental units for
geometric lifetime distributions in Section 2.4 and for general lifetime distributions in Sec-
tion 2.5.
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When rental duration is random, the convexity of the total number of lost sales, L(y, ξ),
in y and thus, the concavity of the total number of rentals, R(y, ξ), in y, might not hold
for every sample path ξ. As an example, we consider the addition of two rental units to
our inventory system, where the first additional unit fulfills one customer demand with a
very long duration and the second additional unit fulfills several customer demands with
short rental durations. In this case, the number of additional customer demands satisfied
by one extra rental unit is not necessarily non-increasing in y. Therefore, we proceed by
analyzing the structural properties of the expected number of lost sales and the expected
number of rentals. We are the first to consider this modeling aspect simultaneously with
random loss of rental inventory in the following section. It is worth noting that the random
rental duration accounts for each customer’s decision to keep the rental unit for a different
number of periods, but it can also include the random service time needed to repair the
rental unit depending on its condition upon return.

2.4 Rental Inventory Loss with Geometric Lifetime Distri-
butions

This section considers a model in which each rental unit m experiences a loss probability
of p with each rental. Specifically, the random variable lm, which denotes the number of
times the unit m ∈ {1, 2, . . . , y} is rented before retiring from the rental inventory, follows
a geometric distribution with an expected value of 1/p. We assume that

∑Amax
a=Amin

rah(a) +

c ≥ p(kL − kS). This condition implies that the expected benefit,
∑Amax

a=Amin
rah(a) + c, of

converting a lost sale into a rental is greater than or equal to the expected cost, p(kS−kL), of
the rental unit loss. Due to the constant loss probability, the recirculation rule has no effect
on E [Lγn(y, ξ)], E [Rγn(y, ξ)], or E [W γ

n (y, ξ)] for any n. Therefore, we omit the superscript
in the notation used in this section.

We establish the concavity of the expected profit function by first presenting a condition
related to the rental return process for which the expectation of the number of lost sales,
E[L(y, ξ)] :=

∑N
n=1 E[Ln(y, ξ)], is convex. Correspondingly, the expectation of the number

of rentals, E[R(y, ξ)] :=
∑N

n=1 E[Rn(y, ξ)], is concave in the initial inventory of y rental
units for this condition.

Lemma 2.1. If the expected number of rental units returned over the rental horizon

E

 n∑
t=1

Amax∑
a=Amin

Wa,t(y, ξ)


is concave and non-decreasing in y for n = 1, 2, . . . , N , then the expected number of lost
sales E[L(y, ξ)] is convex and non-increasing while the expected number of rentals E[R(y, ξ)]
is concave and non-decreasing in y.

We prove Lemma 2.1 using recursive substitution of the forward differences of the state
equations (2.1). After eliminating all ∆Rn(y, ξ) terms, we can see that the concavity of the
return process is a sufficient condition for the concavity of the expected number of rentals.
We then use an argument by induction and Lemma 2.1 to show that the expected number
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of returns is indeed concave in y, which implies that the expected profit function is also
concave in y.

Proposition 2.1. When rental unit lifetimes are geometrically distributed, the expected
profit π(y) is concave in y for any rental unit recirculation rule and y ≥ 0.

2.5 Rental Inventory Loss with General Lifetime Distribu-
tions

When the lifetimes of the rental units follow a general distribution, the number of rental
units returned in any period n may depend on the policy used to choose among available
rental units to satisfy the demand in previous periods. Also, the number of rentals R(y, ξ)
and the number of lost sales L(y, ξ) might not necessarily be concave and convex, respec-
tively, in y due to a rental unit that has a particularly long or short lifetime. Therefore,
we investigate whether it is possible to establish the concavity of the expected profit in the
initial inventory of y rental units.

Because we have not yet found a direct algebraic proof, we compare sample paths via
coupling, as described in Chapter 4 of Lindvall (1992). A coupling approach allows us
to compare the value of an additional rental unit in two systems that differ only in the
number of rental units. Due to the rental unit lifetime distributions and the recirculation
rule, analysis of the change in the expected number of rentals would otherwise be extremely
difficult. Our approach uses the following steps:

1. Establish demand values d1, d2, . . . , dN , which do not require any distributional as-
sumptions.

2. Operate the system with y rental units, each of which has a lifetime lm, m = 1, . . . , y
to indicate the number of customers that can be served by each rental unit before
it retires from circulation. The ith demand, i ≥ 1, served by rental unit m has a
duration of am,i periods.

3. Add an additional rental unit — the (y+1)st unit to the system — that has a lifetime
l′ and serves demands with durations {a′1, a′2, . . .}. To be clear, the system has rental
units with lifetimes l1, l2, . . . , ly, l

′.

4. To the system described in Step 2 (i.e., ignoring Step 3), add a (y+ 1)st unit that has
a lifetime ly+1 and serves demands with durations {ay+1,1, ay+1,2, . . .}.

5. To the system described in Step 4, add an additional rental unit — the (y + 2)nd
unit — so that the system has rental units with lifetimes l1, l2, . . . , ly, ly+1, l

′. This
additional rental unit has the same lifetime l′ and serves demands with same durations
{a′1, a′2, . . .} as the additional unit added to the system in Step 3.

For notational convenience, we define ξ(y) as the sample path consisting of the demands
d1, d2, . . . , dN of all N periods, the rental unit lifetimes l1, l2, . . . , ly, and the demand du-
rations {am,1, am,2, . . .} for m = 1, 2, . . . , y, as well as the lifetime l′ and rental durations
{a′1, a′2, . . .} for an additional rental unit. For example, ξ(y) and ξ(y + 1) contain all of
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the sample path information necessary to analyze the systems described in Steps 3 and 5,
respectively.

We consider two types of decisions for rental unit allocations. First, we examine a
“count-based” rental unit state in which the allocation decision is based on the number of
times that each unit has been rented. Then, we study a “condition-based” rental unit state
in which the allocation decision is based on the current state of each rental unit. Each
of these models may be relevant for Rent the Runway. Specifically, the dress’s physical
condition may not be observed — requiring a count-based model — if it is not carefully
inspected or if the cause of a dress failure is difficult to observe as the dress’s condition
degrades. For instance, a zipper may be more likely to fail over time even if indications of
impending failure may not be observed. On the other hand, a dress’s physical condition
may be observed if it relates to the condition of the fabric. Satin dresses are susceptible to
developing minor damage to individual threads due to their loose weaves, and the repeated
ironing of silk taffeta dresses may cause them to lose their ideal appearance around pleats
and seams. A condition-based model would then be more appropriate for this setting.

2.5.1 Count-Based Rental Unit State

For the analysis in this section, we assume that
∑Amax

a=Amin
raha+ c ≥ (kL−kS)`i for 1 ≤ i ≤

N/A. This condition implies that the expected benefit of an additional rental to a customer
(i.e.,

∑Amax
a=Amin

ra + c) is greater than or equal to the reduction in the salvage value due to
loss multiplied by the loss probability.

We denote by C the set of all policies for choosing an available rental unit to satisfy
a demand based on knowledge of the number of times that each unit has been rented. In
any period n, a sequence of Rn(y, ξ) allocation decisions must be made. For each decision,
we allow A, ∅ ⊂ A ⊆ {1, 2, . . . , y}, to denote the set of available rental units from which
the rental unit to allocate, mγ , is chosen. At the time of the decision, the number of times
that each rental unit has been rented is ηm for m = 1, 2, . . . , y; for the chosen rental unit
mγ , the rental unit is removed from A and ηγm is increased by one. If the rental unit is lost
(i.e., lmγ = ηγm), the rental unit is not returned to A. Otherwise, it is returned to A at the
beginning of period n+ amγ ,ηmγ .

In this section, we examine two recirculation rules: the even spread policy (denoted by
“ES”) and the static priority policy (denoted by “SP”). In the even spread policy, each
demand is served by an available rental unit that has been rented out the fewest number
of times among all available rental units. We note that the priority is assigned to rental
units in the order of increasing hazard rate under the even spread policy. The static priority
policy, on the other hand, allocates rental units according to a priority list that does not
change over the course of the rental horizon. These two policies can be defined as selecting
some rental unit mES or mSP such that

mES ∈ arg min
m∈A

ηm,

mSP ∈ arg max
m∈A

ηm.

Because the static priority rule is easier to analyze, we begin by proving that policy’s
structural properties and then consider the even spread policy.
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Figure 2.2: Rental unit recirculation schemes for Example 2.2 with y = 3. The number
inside a box identifies the rental unit that satisfies a demand.

Example 2.2. Figure 2.2 shows how different rental unit recirculation schemes can af-
fect the number of rentals and lost sales for an example sample path ξ. Using the same
demand values as in Example 2.1, we now state the lifetimes of available rental units as
{l1, l2, . . . , l5} = {2, 4, 3, 4, 2}. For y = 1 and y = 2 with l1 = 2 and l2 = 4, both the even
spread and static priority policies satisfy the same number of demands; i.e., R(1, ξ) = 2
and R(2, ξ) = 5. However, when y = 3, the even spread recirculation rule enables one more
rental over the rental horizon than the static priority rule. Under the static priority rule,
rental unit 1 is lost after serving a demand in period 3, while it is lost after serving a de-
mand in period 5 under the even spread rule. This allows one extra demand to be served in
period 5 for the even spread rule because it has one more rental unit available than the static
priority rule. Figure 2.3a shows that the even spread rule also serves one more demand than
the static priority rule when y = 4 and that both policies serve all ten units of demand when
y ≥ 5. Figure 2.3a also demonstrates that the number of rentals is not necessarily concave
in y; i.e., the addition of rental unit 1 with lifetime l1 = 2 satisfies fewer additional units
of demand than the addition of rental unit 2 with lifetime l2 = 4.

In Figure 2.3b, we use the demand values from Example 2.2 but instead let the lifetime
of each rental unit be a discrete uniform random variable between 2 and 4 (i.e., `2 =
`3 = `4 = 1/3), and estimate the expected number of rentals with a simulation executed
for a sufficiently large number of replications so that the standard error of the experiment
is negligible. Even though concavity is violated on individual sample paths, the expected
number of rentals is revealed to be a concave function of the number of rental units. The
even spread and static priority policies result in the same number of rentals regardless of
the sample path for y ≤ 2 and y ≥ 5. However, the expected number of rentals for the even
spread policy exceeds that of the static priority policy by 0.33 when y = 3 and by 0.26 when
y = 4. When y = 3, the even spread policy results in at least one more rental than the
static priority policy on 44.1% of the sample paths, and the static priority policy exceeds
the even spread policy on 10.9% of all sample paths. As an example of a sample path of
rental unit lifetimes in which the static priority policy outperforms the even spread policy,
the static priority policy produces one more rental than the even spread policy when y = 3
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(b) Expected number of rentals.

Figure 2.3: Effect of the number of rental units and rental unit recirculation rule for Ex-
ample 2.2.

and {l1, l2, l3} = {4, 3, 2}.

The Static Priority Recirculation Rule

The static priority recirculation rule, denoted by the superscript SP , guides the selection
of rental units to satisfy demands according to a constant priority list. That is, when a
rental unit is needed to satisfy demand, the one with the highest priority among the set of
available rental units is chosen. Therefore, when the rental duration is deterministic, the
static priority recirculation rule is the same as the policy selecting the rental unit that has
been rented the most.

Proposition 2.2. In a rental system with general rental unit lifetime distributions, the
expected profit πSP (y) is concave in the initial inventory of y rental units for the static
priority recirculation rule.

To prove this property of the expected profit function, we utilize first forward differences
of the state equations and sample path coupling to compare the expected value of an
additional rental unit for a system with initial inventory level y to the expected value of
a an additional rental unit for a system with initial inventory level y + 1. By assigning
the lowest priority to the additional rental unit, we are able to analyze the system without
changing any existing allocations of rental units to customers.

The Even Spread Recirculation Rule

We now consider the even spread recirculation policy, which satisfies a demand with the
rental unit that has been rented the fewest number of times. Defining Rγ(n,m)(y, ξ) as
the number of times that rental unit m is rented in period n under some policy γ, an even
spread compliant policy selects a rental unit m to satisfy a demand based on available rental
units that minimize

∑n−1
t=1 R

γ
(t,m)(y, ξ). When the loss probability for rental units is non-

decreasing in the number of times rented, the even spread recirculation priority corresponds
to a hazard rate ordering. We assume that ties are broken by some static priority list for
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allocating rental units. We first investigate the concavity of the expected profit function in
the initial rental inventory (Proposition 2.3). We then demonstrate the optimality of the
even spread policy to maximize the expected profit when the loss probability of each rental
unit increases with the number of times that the unit has been rented (Proposition 2.4).

Proposition 2.3. In a rental system with general rental unit lifetime distributions, the
expected profit πES(y) is concave in the initial inventory of y rental units under the even
spread recirculation rule.

The proof of Proposition 2.3 is challenging as the additional rental units may change
which demand is served by the existing rental units. When comparing the effect of an
additional unit on systems with y and y + 1 rental units, we restrict any rental units from
serving certain customer demands in the system with y units so that corresponding rental
units serve the same customer demands in the two systems. We then show that relaxing
the restriction so that the additional unit for the system with y units has a more positive
effect on the expected profit than an additional unit for a system with y + 1 units.

When the rental unit loss probability is increasing in the number of times that the unit
has been rented, we identify the even spread policy as the optimal rental unit recirculation
rule to maximize the expected profit.

Proposition 2.4. If the loss probability of each rental unit increases with the number of
times that the unit has been rented, then the profit from the even spread recirculation rule is
stochastically larger than that of any other count-based recirculation rule; i.e., ΠES(y, ξ) ≥st
Πγ(y, ξ), γ ∈ C.

Our key argument in this proof is a pairwise interchange argument in which iteratively
switching each instance that an allocation violates the even spread policy to conform to the
even spread policy increases the expected number of rentals. We require additional notation
to compare sample paths in our argument, which we describe along with an overview of the
steps of the proof:

1. Find the first allocation decision over the rental horizon that violates the even spread
policy. We denote this existing policy with the superscript V for “violating.” Assume
that this violating decision occurs in some period n. Specifically, a rental unit j is
allocated to demand when some other rental unit i is available and

∑n−1
t=1 R

V
(t,j)(y, ξ) >∑n−1

t=1 R
V
(t,i)(y, ξ). The availability of rental units i and j implies that

∑n−1
t=1 R

V
(t,j)(y, ξ) <

lj and
∑n−1

t=1 R
V
(t,i)(y, ξ) < li.

2. Consider a switched forward allocation path of units i and j in periods n, n+1, . . . , N
so that rental unit i is allocated instead of rental unit j. We refer to this allocation
with the superscript S for “switched.”

3. Change values in ξ related to the lifetimes and rental durations after period n for
units i and j with two new partial sample path vectors ξ(1) and ξ(2). Specifically,
we generate two sets of random durations (a(1),1, a(1),2, . . .) and (a(2),1, a(2),2, . . .) for
demands after period n served by two different rental units and inverse probability
mass function values η(1) and η(2) for the conditional lifetime distributions of the two
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rental units. The latter information allows the determination of the lifetimes l(1) and
l(2).

4. Calculate the number of rentals over the entire horizon under four scenarios (with
corresponding notation for the total number of rentals used for convenience): (1)
RV (ξ(1), ξ(2)) for the violating allocation with ξ(1) applied to rental unit i and ξ(2) to

rental unit j; (2) RV (ξ(2), ξ(1)) for the violating allocation with ξ(2) applied to unit

i and ξ(1) to unit j; (3) RS(ξ(1), ξ(2)) for the switched allocation with ξ(1) applied to

unit i and ξ(2) to unit j; and (4) RS(ξ(2), ξ(1)) for the switched allocation with ξ(2)
applied to unit i and ξ(1) to unit j.

5. Compare scenarios to observe that E
[
RS(y)

]
≥ E

[
RV (y)

]
, which implies that E

[
ΠS(y)

]
≥

E
[
ΠV (y)

]
under certain assumptions on the cost parameters.

6. Go to Step 1 and repeat until the switched allocation is equivalent to the even spread
allocation.

2.5.2 Condition-Based Rental Unit State

We now study a different model of rental units in which each rental unit m has a known
state sm ∈ {1, 2, . . . , S} that may change after each time that the unit is rented. On a
sample path ξ, we define sm,i as the state of rental unit m after it is rented for the ith
time, m ∈ {1, 2, . . . , y} and i ∈ {1, 2, . . . , lm}. The initial state of each rental unit is defined
as sm,0 = 1 and a rental unit’s retirement from recirculation corresponds to sm,lm = S. A
transition probability matrix Pa governs the evolution of each rental unit’s state upon each
instance in which the unit is rented with duration a. We define Pa(i, j) as the probability
that a rental unit transitions from state i to state j after each rental with i, j ∈ {1, 2, . . . , S}.
We also assume that

∑Amax
a=Amin

raha + c ≥ (kL− kS)
∑Amax

a=Amin
Pa(i, S) for i = 1, 2, . . . , S − 1

so that the expected value of offering a rental is never negative. For convenience, we define
an overall transition probability matrix P with P (i, j) :=

∑Amax
a=Amin

haPa(i, j).
One simple recirculation policy based on the observed rental unit state is to allocate

the rental units in increasing order of their state. In other words, the rental unit that is
in the best condition is given the highest allocation priority. We label this policy as the
“best-first” policy, denoted by the superscript BF . Similarly, the “worst-first” policy, which
we denote as WF , gives the highest priority to the rental unit in the worst condition for
which it can still be rented out. Specifically, for each policy, the rental unit selected from
the set of available rental units A obeys

mBF ∈ arg min
m∈A

sm,

mWF ∈ arg max
m∈A

sm.

For both policies, we show that the expected number of rentals is concave in the initial
inventory level. We use D to represent the set of all recirculation rules for choosing a rental
unit to allocate solely based on the condition and availability of each rental unit.

Proposition 2.5. For the best-first and worst-first recirculation rules, the expected profit
πγ(y), γ ∈ {BF,WF}, is concave in the initial inventory of y rental units.
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We next consider the optimal rental unit recirculation policy when rental unit selection
decisions are based on the rental unit condition. We assume that the transition matrix is
totally positive of order 2; i.e., that P (i, j)P (i′, j′) ≥ P (i, j′)P (i′, j) for all i < i′, j < j′.
Brown and Chaganty (1983) show that this property implies that the first passage time from
state 1 to some state Cj = {i : i > j} has an increasing failure rate for j = 1, . . . , S − 1.

Proposition 2.6. If the transition matrix P is totally positive of order 2, then the profit
from the best-first policy is stochastically larger than that of all other condition-based recir-
culation rules; i.e., ΠBF (y, ξ) ≥st Πγ(y, ξ), γ ∈ D.

2.6 Case Study: Rent the Runway

Motivated by the high-fashion dress rental business Rent the Runway, we introduce the
model parameters representing a rental system with usage-based loss of inventory in Sec-
tion 2.6.1. We discuss the impact of the rental inventory loss on the optimal procurement
decision in Section 2.6.2 and the effect of the rental unit recirculation rule on rental inven-
tory management in Section 2.6.3. All numerical testing is performed via sample average
approximation, as described in Kleywegt et al. (2002).

2.6.1 Rental Model Parameters

The product we consider is a “middle-tier” dress as described in Eisenmann and Winig
(2012); i.e., a full-price rental provides a net revenue of $59, which is the difference between
$90 in revenue and $31 in costs of cleaning, shipping, packaging and credit card processing.
However, customers are allowed to rent a second style for $25 and a second size for free;
thus, a unit may not achieve $59 in net revenue every time it is rented. We assume that
these three scenarios for a rental — renting as the primary dress with net revenue of $59,
renting as the secondary dress with net revenue of $20, and renting as the free second size
with net cost of $5 — occur with probabilities 50%, 20%, and 30%, resulting in an expected
net revenue of r = $32 per rental.

Eisenmann and Winig (2012) report that Rent the Runway purchases a middle-tier dress
with a retail price of $750 for $226. We assume an annual unit holding cost that is equal
to 20% of the purchase price of the dress to account for the cost of storage and the cost of
capital. At the end of a fashion season, dresses in a variety of conditions are sold in New
York City at what is known as a “sample sale.” Based on websites such as Yannetta (2013)
that report on these sales, we let a dress in good condition sell for 80%−85% off of the $750
retail price and a dress in bad condition (i.e., a dress that retires from the rental inventory)
to sell for 95% off of the retail price. Adjusting these sample sale prices for staging and
transaction costs, we assume a dress that does not retire from the rental inventory by the
end of the season to have a salvage value of $100 and a dress that retires from the rental
inventory to have a salvage value of $30. We also calculate procurement costs separately
for these two types of dresses by combining their purchase prices, holding costs and salvage
values. For a 26-week horizon, the cost of procuring a dress is kS := $149, which consists of
a purchase price of $226, a holding cost of $23 and a salvage value of $100. A dress retiring
from the rental inventory incurs an additional penalty of $70, resulting in a procurement
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Figure 2.4: The optimal inventory level increases with the loss probability for a 26-week
system, and ignoring inventory loss significantly reduces expected profit compared to the
optimal inventory level.

cost of kL := $219. Finally, we choose c := $5 as a customer goodwill penalty for the loss of
a sale. With these parameters, a dress must be rented five times (seven times, on average,
if the possibility of loss exists) to break even based on the ratio kS/c (kL/c).

With each period corresponding to a week, we consider Poisson distributed demand with
a mean of λ = 7 per week and a rental horizon of N = 26 weeks, which corresponds to one
of two major fashion seasons each year. We will also consider a longer rental horizon of
N = 52 for a dress that could be in style for two consecutive seasons. We model each rental
duration as lasting for a constant of A = 2 periods; i.e., the rented dress will be unavailable
during the weekend for which it is rented and the weekend either preceding or following
that weekend, depending on the day of the week on which the rental begins. A more
granular representation of the rental duration in terms of the individual days is certainly
possible. However, we believe that weekly periods adequately represent the system under
the assumption that customers of Rent the Runway rent dresses primarily for weekend
events.

2.6.2 Rental Inventory Loss

We first investigate the importance of accounting for the possibility of usage-based loss
when choosing the initial inventory of rental units. Allowing the lifetime of each rental unit
to follow a geometric distribution with a loss probability of p ∈ {0, 0.01, 0.02, 0.05, 0.10},
we illustrate the expected profit as a function of the initial inventory of rental units for
the short rental horizon of N := 26 periods in Figure 2.4, and compare it to the “state of
the art” in rental inventory management represented by Baron et al. (2011), which does
not include inventory loss. Consistent with Proposition 2.1, we observe the expected profit
function to be concave in the number of rental units to procure in the beginning of the
rental season. In the system with no inventory loss (p = 0), we identify the optimal solution
as 16 units with a corresponding service rate — i.e., the percentage of customers that are
served — of 93.5%. However, when there is the possibility of inventory loss (i.e., p > 0),
we find the optimal number of rental units to increase in the rental unit loss probability.
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Figure 2.5: Accounting for inventory loss is more important in terms of effect on expected
profit for a 52-week system.

Specifically, for a 5% loss probability, the optimal policy is to add three rental units to the
initial inventory. Hence, ignoring inventory loss and using 16 rental units instead of the
optimal 19 rental units results in a reduction of 7.3% in the expected profit. Furthermore,
the service rate would only be 79.4% instead of the 88.7% corresponding to the optimal
number of rental units for the system with p = 5%.

Figure 2.5 shows that the impact of ignoring inventory loss is more dramatic for the
longer rental horizon covering 52 weeks than for the shorter rental horizon with 26 weeks.
This can be explained by the availability of fewer rental units to rent towards the end of the
longer rental horizon. The comparison of Figure 2.5 to Figure 2.4 reveals more asymmetry
in the expected profit as a function of the initial inventory of rental units for the longer
horizon. More specifically, the slope of the expected profit function for a lower value of
the number of rental units is steeper because each rental unit averts more lost sales in a
long horizon than in a short horizon. Furthermore, the higher optimal service rate for the
system with the longer horizon than the system with the shorter horizon reflects the higher
value of a marginal rental unit. In other words, the consequence of having too few rental
units is more severe in the longer horizon.

For rental systems considered in Figure 2.4 and Figure 2.5, the optimal policy is to
always add more rental inventory to account for the loss of rental units; i.e., the profit-
maximizing inventory level is increasing in p for p ∈ {0, 0.01, 0.02, 0.05, 0.10}. However, if
the loss probability is sufficiently high, then the units will not be rented enough to justify
having any stock at all, which means that the optimal policy is to not stock any rental
units. Figure 2.6 illustrates such a policy by considering c ∈ {20, 40, 60, 80} for the net
revenue per rental to represent varying levels of profitability per rental, N = 26 weeks for a
rental horizon, and λ = 7 for the mean demand. We observe that the optimal response to
an increasing inventory loss probability is to initially increase the inventory of rental units
until we reach a certain value of the loss probability p associated with the optimal number of
rental units y? to procure in the beginning of the rental horizon. As p continues to increase,
the optimal number of rental units decreases and the optimal service level also appears to
be non-increasing in the loss probability. Eventually, a loss probability p̂(c) is reached such
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Figure 2.6: The optimal inventory level is non-monotonic in the rental unit loss probability
p.

Table 2.2: Performance of simple policies based on upper bound for number of lost rental
units.

p 0% 1% 2% 5% 10%

y∗ 16 17 18 19 21
yUB1 16 18 20 26 37

πUB1/π∗ 100.0% 98.2% 95.0% 69.2% -20.8%
yUB2 16 18 20 25 34

πUB2/π∗ 100.0% 98.2% 95.0% 75.0% 8.1%

that y? = 0 for all p ≥ p̂(c). Naturally, the optimal service level and p̂(c) increase with c
because a dress with a higher net revenue per rental requires fewer rentals to be profitable.

We also provide two simple bounds on the the number of lost rental units when the
loss probability is p. Both of these bounds also translate to easy-to-implement policies
that managers may use to compensate for usage-based loss by adding extra rental units. In
particular, a manager who has chosen the optimal initial inventory level without usage-based
loss — possibly through Baron et al. (2011) or by approximating the system as an M/G/c/c
queue — can simply increase the initial inventory level by the approximate number of lost
rental units.

First, we present a bound (UB1) based on the assumption that all demand is served;

i.e., E [R(y, ξ)] ≤ E
[∑N

n=1Dn

]
, where D1, D2, . . . , DN are random variables representing

the demand over the horizon. The expected number of lost rental units is then E [Z(y, ξ)] =

pE [R(y, ξ)] ≤ pE
[∑N

n=1Dn

]
.

A second bound (UB2) is derived from assuming that all rental units have 100% uti-
lization resulting from demand that is sufficiently large in each period. Denoting the ex-
pected rental duration by ā, the expected maximum number of customers that a rental
unit can serve is dN/āe, where d·e is the ceiling function. Thus, E [R(y, ξ)] ≤ ydN/āe and
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E [Z(y, ξ)] = pE [R(y, ξ)] ≤ pydN/āe.
We can also compare the optimal initial inventory level to a simple policy using the

optimal initial inventory level y = 16 when p = 0 combined with the two upper bounds
on the number of lost rental units. If all demand is assumed to be satisfied (UB1), the
expected number of rentals is 162 and the expected number of lost rental units is 162p.
If all rental units are fully utilized (UB2), each rental unit will be rented out exactly 13
times, which results in a maximum number of rentals of 208 and a maximum expected
number of lost rental units of 208p. Table 2.2 shows the policies and their performance in
relation to the optimal policy. As expected given that the policies are upper bounds on
the number of lost rental units, the initial inventory level for both bounds exceeds that of
the optimal policy. For example, when p = 5%, the initial inventory should be increased
from 16 to 19 for the optimal policy due to inventory loss. However, under UB1, the initial
inventory is increased to 26, achieving only 69.2% of the optimal profit. Under UB2, the
initial inventory is increased to 25 and achieves 75% of the optimal profit.

2.6.3 Rental Unit Recirculation Rules

Different recirculation rules employed during the rental horizon may result in different
numbers of units available near the horizon’s end. We expect that the importance of the
rental unit recirculation policy varies according to factors such as the horizon length, rental
unit lifetime distribution, and demand characteristics. Of concern to us is a horizon that is
short enough that some rental units are still functional by the end of the last time period
but long enough that some rental units have already retired from the rental inventory during
the season. In this section, we compare the even spread and static priority policy for the
count-based model, omitting similar managerial insights and results for the best-first and
worst-first rules of the condition-based model.

Executives at Rent the Runway indicate that the policy used in practice more closely
resembles the static priority policy than the even spread policy. Out of convenience, dresses
that have just returned from cleaning after a rental may be selected to satisfy the next
rental. However, because individual units are not tracked, there may be an element of
randomness in dress selection as workers select a dress to rent out. The goal of this section
is to quantify the effect of using the even spread policy for rental unit recirculation over
the static priority recirculation rule. For an adequate representation of the role of the rate
at which the loss probability is increasing, we consider the lifetime of a rental unit to be a
discrete uniform random variable that takes values between 1 and Amax ∈ {10, 11, . . . , 20}
rentals. As before, we consider a rental horizon of 26 periods and a mean demand of 7
units, with all other parameters remaining the same.

The rental system illustrated in Figure 2.7 is only profitable when Amax ≥ 13 for the even
spread policy and when Amax ≥ 14 for the static priority policy due to the costs incurred
when rental units are lost. Consistent with Proposition 2.4, the even spread policy achieves
a higher expected profit than the static priority policies. This performance difference can
be explained by the nature of the even spread policy to delay the failure of rental units
until later periods; thus, the even spread policy satisfies higher demand in later periods
compared to the static priority recirculation policy. On the other hand, the static priority
policy causes failures to occur earlier in the rental horizon, limiting the system’s ability to
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(c) Optimal expected profit.

Figure 2.7: Choosing the even spread policy over the static priority policy increases the
optimal initial inventory level, service rate, and expected profit.

meet higher quantities of demand in later periods.
The optimal number of rental units for the even spread, as well as the corresponding

service rate, exceeds that of the static priority policy. Choosing the even spread policy
instead of the static priority policy allows for rental units to be profitably added, thereby
increasing the service rate. For example, the optimal initial inventory level is two units
higher for even spread policy than the static priority policy when Amax = 14, and the
service rate is 6.0 percentage points higher for the even spread policy.

2.7 Conclusions

As rental industries continue to grow in size and the scope of products rented, inventory
management techniques that account for the complexities of rental systems become critical
for achieving profitability and service goals. We develop a discrete-time rental model with
random usage-based loss of inventory that also includes arbitrarily distributed customer
demands and random rental durations, and identify structural properties for this model.
The concavity of the expected profit function in the initial inventory of rental units is
shown to hold for geometrically distributed rental unit lifetimes regardless of the rental
unit recirculation rule. When rental unit lifetimes are generally distributed, we also show
the concavity of the expected profit function in the initial inventory of rental units for
simple rental unit recirculation rules which are count-based or condition-based. We further
demonstrate the optimality of the even spread policy in the count-based setting and the
best-first policy in the condition-based setting to maximize the expected profit when the
loss probability of each rental unit increases with the number of times it is rented.

Several important insights emerge from a numerical analysis of our rental inventory
management solutions for a high-fashion dress rental business. First, we find that the
possibility of inventory loss during the rental season can significantly affect profitability,
even with a small probability of loss each time that a unit is rented. Choosing the number
of rental units to procure in the beginning of the rental season by ignoring the effect of rental
inventory loss can reduce the expected profit by 7%. Second, we examine how the optimal
inventory policy responds to the increasing loss probability. We show that the optimal
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policy is to first procure additional rental units, then decrease the number of rental units
to be procured and eventually procure zero rental units. Finally, we consider rental unit
lifetime distributions with loss probabilities that are increasing in the number of rentals.
For horizon lengths and lifetime distributions in which the recirculation rule affects the
expected profit, we show that choosing the even spread policy allows for more inventory to
be profitably obtained and can increase the service level by up to 6 percentage points.

Many categories of products available to rent, including dresses at Rent the Runway,
present customers with the option to substitute if their first choice is unavailable. Thus,
a future research direction in the study of rental inventory management is the case of
multiple products with stock-out based substitution. Potential future work also includes
advance reservation acceptance policies, in-season reordering and maintenance decisions,
and rental pricing.
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Chapter 3

Reservation Admission Control in
Rental Systems

With Alan Scheller-Wolf and Sridhar Tayur

3.1 Introduction

When businesses provide customers with the temporary use of a reusable asset, they may
offer customers the option to reserve the asset in advance to better match supply and
demand. Reservations are particularly important when customer demand is time sensitive
or customers are highly averse to waiting. In many rental businesses, either the customer
or the firm requires a commitment to provide service in advance of the service start time.
Examples include rental businesses that allow specific rental units such as high-fashion
dresses to be reserved, restaurants that allow reservations for tables, and hospitals in which
doctors or machines times may be booked through appointments. Decisions about the
number of reservations to offer and policies surrounding changes and cancellations affect
the percentage of overall demand captured, the utilization levels of the reusable assets, and
the overall service level.

At Rent the Runway, customers may place reservations for a dress up to four months in
advance. For each dress size of each style, customers can see a calendar of dates for when
they can make reservations. Customers may cancel reservations with a full refund up to
thirty days in advance of the delivery date. Between fourteen and thirty days, a canceling
customer receives credit to her account. A customer may cancel within fourteen days of
the event if she pays a fee of $9.95. In the event that Rent the Runway is not able satisfy
a reservation due to damage or another customer’s late return, customers report that a
company stylist tries to work directly with them to find a substitute item.

In this chapter, we study the optimal reservation admission decision and discuss chal-
lenges related to showing the optimal policy. To the best of our knowledge, we are the
first to provide results for a stochastic model in which acceptance decisions are made over
time upon the arrival of reservation requests. We also present a heuristic for this decision
and numerically evaluate its performance. After reviewing related literature in Section 3.2,
we describe our model in Section 3.3. We discuss challenges related to structural results in
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Section 3.4 and heuristic policies in Section 3.5. In Section 3.6, we provide numerical results
related to three different rental operations, and present improvements to the heuristic in
Section 3.7. We conclude in Section 3.8 with summary of our work and a discussion of
possible future topics of investigation.

3.2 Related Literature

Early work on reservations primarily focused on characterizing the blocking probability of
a loss system with reservations or the delay distribution when customers accept the next
available service time, and was motivated by bandwidth management in telecommunications
applications. Emstad and Feng (1990) characterize the blocking probability of a discrete-
time model with stationary demand, stationary notice distribution, and service times of one
period for both loss systems and systems in which customers will wait. Kaheel et al. (2006)
characterizes the blocking probability for a similar loss model but allows for service times to
follow a geometric distribution, and Zhu and Veeraraghavan (2008) studies a related model
in which customers have multiple acceptable starting times. The blocking probabilities of
continuous-time reservations systems are studied for a single resource by Coffman Jr et al.
(1999) and for multiple resources by Lu and Radovanović (2007) and van de Vrugt et al.
(2014).

The tactical decision of admission control has also attracted attention, with most work
motivated by bandwidth sharing networks. Luss (1977) and Virtamo and Aalto (1991)
analyze models for accepting and rejecting customer reservations for a discrete-time model.
In their models, all customers arrive before the start of a finite service horizon and request a
reservation for a start time that is uniformly distributed over the horizon. Greenberg et al.
(1999) allow for reservations to be placed far in advance in a system with random holding
times, and propose an algorithm for admissions control of requests in which service is to
begin immediately. Levi and Shi (2011) study a problem in which arrival rate, notice time,
and revenue generated vary by customer class, and propose a policy for class-based total
admission rates based on a linear programming approximation of the system.

The admissions control problem has additionally been studied for restaurant and health-
care applications. Bertsimas and Shioda (2003) address the problem of allocating restaurant
tables to parties and which party sizes to deny at different time intervals. Two papers an-
alyze appointment scheduling for a hospital resource to balance low-priority demand that
arrives far in advance and high-priority demand that has a shorter notice time. Gerchak
et al. (1996) model a daily decision to decide how many waiting elective patients to admit
to an emergency room, and Patrick et al. (2008) study a similar decision but with a more
explicit schedule for a diagnostic resource.

Another tactical decision that bears similarity to the admission control decision is the
lead-time quotation problem. Duenyas and Hopp (1995) model a production system as a
G/G/1 queue with an increasing failure rate for the service time distribution. Modeling
the state space based on the number of jobs waiting and the time-in-service of the active
job, they show the optimality of a threshold policy for the acceptance decision based on
the time-in-service of the active job. Savasaneril et al. (2010) modify this model to include
inventory ordered using a base-stock policy and an M/M/1 production system. They show
that the base stock policy has a threshold structure. Kapuscinski and Tayur (2007) consider
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a discrete-time model in which demand for two classes of customers arrives each period.
Classes are distinguished by their margin and penalty costs, and the key decision is the lead
times to quote to arriving demands. Their structural results rely on showing that the state
space needed to describe the optimal policy can be reduced to variables representing the
total “workload” and the latest due date.

The strategic question of whether to accept reservations in the context of restaurants
was the subject of Alexandrov and Lariviere (2012). In their model, the restaurant has
the same service capacity regardless of whether reservations are offered, but the number of
customers served by a restaurant offering reservation is diminished by no-show customers.

Closest to our work is Papier and Thonemann (2010), who model the admission decision
for a rental system with Poisson arrivals and exponential service times in which there
are two classes of customers: higher value customers who make advance reservations with
a constant notice time and lower value customers who request immediate service. All
advance reservations must be accepted, but customers requesting immediate service may be
turned away. They propose a heuristic based on approximating the probability of accepting
demands in future decisions. The performance of this policy is compared to a policy that
ignores reservations as a lower bound and to a policy with known demand arrivals by
customer class. They position reservations for a rental system as a form of advance demand
information to build on a line of research started by Hariharan and Zipkin (1995) that shows
the value of advance demand information in conventional inventory settings.

3.3 Model Description

We study admission control policies for a single-class model in which each customer requests
a reservation that must be immediately accepted or rejected. A rental firm begins a finite
rental season over the horizon [0, T ] with y rental units. All customers request service a
constant τ time units before they desire service to begin, and we refer to this time τ as the
notice time. Demand is Poisson distributed with rate λ, and rental times (i.e., the duration
of each rental) are exponentially distributed with rate µ. Without loss of generality, we let
µ = 1 and scale λ accordingly. We let F (x) := 1−eµx represent the cumulative distribution
function for the service time (with complement F̄ (x) := eµx). Revenue per unit time is r,
with the expected revenue of r/µ earned from satisfying a demand. Rejecting a demand
carries with it a penalty of cR. Not being able to fulfill an accepted reservation has a penalty
of cF . We assume that cR < cF ; otherwise, the optimal policy is to accept all reservation
requests.

Due to the complexities of this model’s arrival process, we consider a finite horizon over
which J reservation requests arrive, with each arrival epoch j referred to as period j for
j = 1, 2, . . . , J . Each request is associated with an acceptance decision aj(k,R) ∈ {0, 1}
with aj(k,R) = 0 representing a rejection and aj(k,R) = 1 representing an acceptance. We
let k ∈ {0, 1, . . . , y} represent the number of rental units that are in service (i.e., “busy”)
at the time of the decision. This decision takes place upon each customer j’s arrival at
time Aj . If the reservation request is accepted, the scheduled start time of the jth arrival
is Sj := Aj + τ . We denote the set of reservations that have been accepted but have not
yet begun service upon the jth arrival as R. The vector R := {t1, t2, . . .} contains the
time until future reservations are scheduled to start service; i.e., the next demand to begin
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service starts in t1 time units. Accepting the jth reservation request at time Aj transforms
Rj to R+

j := Rj ∪ τ .
We define two functions for the evolution of the reservation vector R over the time

horizon. First, we define the function Uj(R) to update the reservation vector from arrival
epoch j to the next arrival epoch j + 1 as

Uj(R) := {t ∈ R : t > Aj+1 −Aj} − (Aj+1 −Aj),

where AJ+1 = ∞. We also note that Uj(R) = ∅ if Aj+1 − Aj > τ . Second, we use the
function αj(R) to choose a subset of reservations for which service begins before time Aj+1

(i.e., those removed by the function Uj(R)), and define it as

αj(R) := {t ∈ R : t < Aj+1 −Aj}.

This notation allows us to define |αj(R ∪ τ)| stages between period j and j + 1. The index
i, i = 1, 2, . . . , |αj(R ∪ τ)|, is used to refer to a specific stage. Each stage i, i ≤ αj(R),
corresponds to either the start of service for an accepted reservation if a rental unit is
available or a failure to fulfill the reservation if no rental unit is available. If Aj + τ < Aj+1,
stage |R| + 1 corresponds to the start time for the reservation under consideration for
acceptance, and t|R|+1 = Aj + τ .

Next, we define state probability variables to keep track of the number of busy units
between periods j and j+1. For convenience, we denote the probability that a binomial ran-
dom variable equalsm with n trials and success probability p by the function bm(n, p). When
Aj + τ < Aj+1, we also use the abbreviated notation bm(n) := bm

(
n, F̄ (Aj+1 −Aj − τ)

)
to represent the probability that m units are still in service at time Aj+1 if n units are in
service at time Aj +τ . The probability that m rental units are busy immediately before the
possible start of service at stage i after arrival epoch j, at which point k rental units are
busy and the reservation vector is R, is defined as pji,m(k,R) and is calculated recursively
with

pj1,m(k,R) := bm(k, F̄ (t1 −Aj))

and

pji,m(k,R) :=

y∑
n=m−1

bm
(
min{y, n+ 1}, F̄ (ti − ti−1)

)
pji−1,n(k,R), i = 2, 3, . . . , |αj(R ∪ τ)|.

When Aj + τ < Aj+1, the state probability pj|R|+1,m(k,R) plays an important role in
our analysis as it corresponds to the last time when the system state remains unaffected
by aj(k,R). For convenience, we use the notation βjm(k,R) := pj|R|+1,m(k,R), which may

abbreviated to βm(k) := pj|R|+1,m(k,R) when the arrival epoch j is clear. To account for

aj(k,R) = 1 (i.e., when the admission decision is “yes”), we also define the state probability
at time Aj+1 as

pjY,m(k,R) : =

y∑
n=m−1

bm (min{y, n+ 1}) pj|R|+1,n(k,R)

=

y∑
n=m−1

bm (min{y, n+ 1})βn(k).
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If aj = 0 or Aj + τ ≥ Aj+1 (i.e., when the admission decision is “no” or not relevant to the
system’s evolution by time Aj+1), then the state probability at time Aj+1 is instead

pjN,m(k,R) :=

y∑
n=m

bm

(
n, F̄ (Aj+1 − t|αj(R)|)

)
pj|αj(R)|,n(k,R).

For convenience, we may refer to the state variables as pi,m(k) or pi,m when the meaning is
clear as the state probability between some time Aj and Aj+1 with reservation vector R at
period j.

We can now define the maximum expected profit from decision j to the end of the
horizon, which we denote by πj(k,R) where k is the number of rental units busy and R is
the vector of accepted reservations at the time of decision aj . The maximum expected profit-
to-go for acceptance and rejection decisions for the jth demand are denoted by π1j (k,R)

and π0j (k,R), respectively. Either the expected reward r or the penalty cR is earned upon
the admission decision, but the failure-to-serve penalty cF (as well as a negation of the
reward r) is assessed if applicable upon the start of service. Thus, the expected profit for
an accepted reservation request is

π1j (k,R) :=

{
r − (r + cF )

∑|R|+1
i=1 pi,y +

∑y
m=0 pY,mπj+1(m, ∅) if Aj + τ < Aj+1,

r − (r + cF )
∑|αj(R)|

i=1 pi,y +
∑y

m=0 pN,mπj+1(m,Uj(R ∪ τ)) otherwise,

and the expected profit for a rejected reservation request is

π0j (k,R) :=− cR − (r + cF )

|αj(R)|∑
i=1

pi,y +

y∑
m=0

pN,mπj+1(m,Uj(R)),

where πJ+1(·, ·) = 0. We define the optimal acceptance policy a∗j (k,R) = 1 if π1j (k,R) ≥
π0j (k,R) and a∗j (k,R) = 0 otherwise.

We also define three comparison operators for use in our analysis. First, we use Λpm(k) :=
pjY,m(k,R)−pjN,m(k,R) to denote the change in the probability that the system has m busy
units at time Aj+1 if the jth reservation request is accepted rather than rejected when there
are k busy units at time Aj . If Aj + τ < Aj+1, then Λpm(k) = 0 because the accepted
reservation has no effect on the system’s state before time Aj+1. If Aj + τ ≥ Aj+1,

Λpm(k) : = pjY,m(k,R)− pjN,m(k,R)

=

y∑
n=m−1

bm (min{y, n+ 1}) pj|R|+1,n(k,R)−
y∑

n=m

bm (n) pj|R|+1,n(k,R)

= bm(m)pj|R|+1,m−1(k,R) +

y−1∑
n=m

(bm(n+ 1)− bm(n)) pj|R|+1,n(k,R)

= bm(m)βm−1(k) +

y−1∑
n=m

(bm(n+ 1)− bm(n))βn(k).
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Second, we also consider the effect of an additional busy rental unit at time Aj . If Aj + τ ≥
Aj+1, we define ∆pm(k) as

∆pm(k) : = pjN,m(k + 1, R)− pjN,m(k,R)

=

y∑
n=m

(
pj|αj(R)|,n(k + 1, R)− pj|αj(R)|,n(k,R)

)
bm(n).

If Aj + τ < Aj+1, we define ∆pam(k) based on the value of a = aj(k,R),

∆p0m(k) : = pjN,m(k + 1, R)− pjN,m(k,R)

=

y∑
n=m

(
pj|R|+1,n(k + 1, R)− pj|R|+1,n(k,R)

)
bm(n)

=

y∑
n=m

(βn(k + 1)− βn(k)) bm(n)

∆p1m(k) : = pjY,m(k + 1, R)− pjY,m(k,R)

=

y−1∑
n=m−1

(
pj|R|+1,n(k + 1, R)− pj|R|+1,n(k,R)

)
bm(n+ 1)

+
(
pj|R|+1,y(k + 1, R)− pj|R|+1,y(k,R)

)
bm(y)

=

y−1∑
n=m−1

(βn(k + 1)− βn(k)) bm(n+ 1) + (βy(k + 1)− βy(k)) bm(y).

Third, we define an operator Θ for the change in the expected profit-to-go in period j due
to the acceptance of a reservation in period j − 1 with reservation vector R in period j − 1:

Θπj+1(m,R) := πj+1(m,Uj(R ∪ τ))− πj+1(m,Uj(R)).

We also use the operator ∆ more generally to refer to the difference between some function
f(k+1) and f(k); i.e., ∆f(k) := f(k+1)−f(k). For example, ∆βm(k) := βm(k+1)−βm(k).

To complete our model definition, we describe the operation of the system on a sample
path. A sample path ξ is comprised of information of information about arrival times
and service durations. We define k−j and k+j as the number of busy units immediately
before and after the possible service start time Sj of the jth arrival. A sample path ξ
includes {A1, A2, . . . , AJ} and {sij}, which represents the remaining service duration of the
ith busy rental unit at the time corresponding to the start of service of the jth arrival for
i = 1, 2, . . . , k+j . This implies that we resample the remaining service time for each busy
rental unit, which is allowed due to the memorylessness of exponential service times. On
a sample path, the number of busy units before and after each service start event has the
following definition:

k−j :=

k+j−1∑
i=1

1{si,j−1 > Sj − Sj−1},

k+j := min
{
y, aj + k−j

}
,
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with k+0 = 0 and 1{·} as the indicator function. At any time t between the service start
times of demands j and j + 1, the number of busy rental units k(t) is defined as

k(t) :=

k+j−1∑
i=1

1{t > Sj − Sj−1}, Sj < t < Sj+1.

The following statistics are used to evaluate the performance of some arbitrary policy γ
on a sample path ξ:

• NY
γ :=

∑J
j=1 1

{
aj , k

−
j < y

}
, the number of accepted reservations that are successfully

fulfilled to gain expected revenue r/µ;

• NN
γ :=

∑J
j=1(1 − aj), the number of reservations that are not accepted, incurring a

penalty cR; and

• NF
γ :=

∑J
j=1 1

{
aj , k

−
j = y

}
, the number of reservations that are accepted but fail to

be fulfilled, incurring a penalty cF .

On any sample path, NY
γ +NN

γ +NF
γ = J . Taking the expectation over sample paths, we

have E
[
NY
γ +NF

γ E
]

= Eξ

[∑J
j=1 aj(k)

]
and E

[
NN
γ

]
= Eξ

[∑J
j=1(1− aj(k))

]
. We use πγ

to refer to the expected profit over the entire horizon for some acceptance policy γ, which
defines the whether to accept or reject a reservation request at any time t given the number
of busy rental units k and reservation vector R. The optimal expected profit is defined as
π∗ := maxγ π

γ .

3.4 Analytical Results

In this section, we first discuss properties related to how the system evolves over time. We
then discuss the optimal reservation acceptance policy, which we conjecture takes the form
of a threshold policy parameterized by the number of rental units that are busy given a
reservation vector R. We describe how to compute numerical upper bounds for the expected
profit on each realization of arrival epochs, and derive analytical upper and lower bounds
for the expected profit based on its similarity to an Erlang loss system.

3.4.1 System Properties

In our analysis, we use a property that adding a busy rental unit at time Aj stochastically
increases the system’s state at every stage over the interval (Aj , Aj+1) given a decision aj .

Lemma 3.1. Given aj, the probability that no more than m′ rental units are busy imme-
diately before each stage i, i = 1, 2, . . . , |αj(R ∪ τ)|, is stochastically decreasing in k; i.e.,∑m′

m=0 p
j
i,m(k,R) ≥

∑m′

m=0 p
j
i,m(k + 1, R) for m′ = 0, 1, . . . , y and k = 0, 1, . . . , y − 1.

Proof. The proof is by induction. At stage i = 1, the property holds because pj1,m(k,R)

and pj1,m(k + 1, R) can be related through the properties of the binomial distribution as
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follows:

pj1,m(k + 1, R) = pj1,m−1(k,R)F̄ (t1 −Aj) + pj1,m(k,R)F (t1 −Aj),

where pj1,m−1(k,R) = 0. The term pj1,m−1(k,R)F̄ (t1−Aj) represents the probability measure
that the additional unit remains in service past time t1 so that the state distribution with
k in service at time Aj is shifted by one. The term pj1,m(k,R)F (t1 − Aj) represents the
probability measure that the additional unit ends service before t1 so that the additional
unit has no effect on the state distribution. Therefore,

m′∑
m=0

pji,m(k + 1, R) =

(
m′∑
m=0

pji,m(k,R)

)
− pj1,m′(k,R)F̄ (t1 −Aj),

and the initial condition that the state distribution is stochastically decreasing in k at time
t1 holds as pj1,m′(k,R)F̄ (t1 −Aj) ≥ 0.

For any stage i ≥ 2, we make a second argument over the possible states by induction
within our first argument that makes an inductive argument over the stages. We begin by
proving the initial condition for when m′ = y: pji,y(k+1, R) ≥ pji,y(k,R), which is equivalent
to

F̄ y(ti − ti−1)
(
pji−1,y(k,R) + pji−1,y−1(k,R)

)
≤ F̄ y(ti − ti−1)

(
pji−1,y(k + 1, R) + pji−1,y−1(k + 1, R)

)
,

as the probability that y rental units remain in service at the next stage is F̄ y(ti − ti−1).
This inequality reduces to

pji−1,y(k,R) + pji−1,y−1(k,R) ≤ pji−1,y(k + 1, R) + pji−1,y−1(k + 1, R),

which holds by the original inductive hypothesis. For any m′ = 1, 2, . . . , y, we must show
that

y∑
m=m′

pji,m(k,R) ≤
y∑

m=m′

pji,m(k + 1, R),

which is equivalent to

y∑
m=m′

(
y∑

n=m−1
bm
(
min{y, n+ 1}, F̄ (ti − ti−1)

)
pji−1,n(k,R)

)

≤
y∑

m=m′

(
y∑

n=m−1
bm
(
min{y, n+ 1}, F̄ (ti − ti−1)

)
pji−1,n(k + 1, R)

)
.

Rearranging terms,

y∑
m=m′−1

min{y,m+1}∑
n=m′

bn
(
min{y,m+ 1}, F̄ (ti − ti−1)

) pji−1,m(k,R)

≤
y∑

m=m′−1

min{y,m+1}∑
n=m′

bn
(
min{y,m+ 1}, F̄ (ti − ti−1)

) pji−1,m(k + 1, R),
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which holds because
∑min{y,m+1}

n=m′ bn
(
min{y,m+ 1}, F̄ (ti − ti−1)

)
is positive and non-decreasing

in m and
∑y

n=m p
j
i−1,n(k,R) ≤

∑y
n=m p

j
i−1,n(k + 1, R) for any m by the original inductive

hypothesis. Thus, we have shown our second inductive hypothesis to be true, which implies
that the first inductive argument also holds.

3.4.2 Optimal Admission Policy

We conjecture that the optimal policy given a reservation vector R is a threshold policy in
which the reservation is accepted if the number of busy units k is lower than some threshold
value. This conjecture is not contradicted by any experiments of Section 3.6 for the optimal
policy described in Section 3.4.3 when all arrival epochs are known.

The most direct way to prove the existence of a threshold policy is to prove that the
profit is concave in the number of busy units using an inductive argument starting with the
last period and working backwards. However, the modeling combination of lost sales and
the reservation vector for our model produces complications that are avoided by Papier and
Thonemann (2010) through only focusing on admitting customers whose service starts im-
mediately. Specifically, complications arise as whether service for each existing reservations
starts or fails must be tracked. That such difficulties occur fits in with other literature on
lost sales models described by Levi et al. (2008), who note that future costs in lost sales
models depend not on some summary statistic but on the actual sequence of orders in the
pipeline.

Next, we demonstrate why the approach to proving concavity of the profit in k of Papier
and Thonemann (2010), who use sample path coupling arguments, fails for our model.

Proposition 3.1. The profit function pij(k,R) is not necessarily concave in k for any given
a reservation vector R.

Proof. We provide a counterexample by showing that πJ(k,R) is not necessarily
concave in k. We focus on the last reservation acceptance decision aJ(k,R) with τ = 1
and R = {0.9} for a system with y = 2 rental units. For cost and revenue parameters,
we have expected revenue from service r/µ = 1, expected service time 1/µ = 2, rejection
cost cR = 0.1 and failure-to-serve cost cF = 1. The probability that the single existing
reservation in R fails to be served is

pJ1,2(0, {0.9}) = 0,

pJ1,2(1, {0.9}) = 0,

pJ1,2(2, {0.9}) =
(
F̄ (0.9)

)2
= 0.407.

If aJ(k, {0.9}) = 1, we also need to account for the probability that the Jth reservation
request is not fulfilled:

βJ2 (0, {0.9}) = 0,

βJ2 (1, {0.9}) = F̄ (1)F̄ (0.1) = 0.577,

βJ2 (2, {0.9}) = F̄ (0.1)2
(
1− F (0.9)2

)
= 0.786.

35



www.manaraa.com

‐2

‐1.5

‐1

‐0.5

0

0.5

1

1.5

0 1 2
Ex
p
e
ct
e
d
 P
ro
fi
t‐
to
‐G
o
 a
t 
D
e
ci
si
o
n
 J

Number of Busy Rental Units k

Maximum Reject Accept

Figure 3.1: Expected profit-to-go violates concavity for the counterexample.

Rejecting reservation request J gives an expected profit of

π0J(0, {0.9}) = −cR = −0.1,

π0J(1, {0.9}) = −cR = −0.1,

π0J(2, {0.9}) = −cR − (cF + r/µ)pJ1,2(2, {0.9}) = −0.913,

while accepting reservation request J gives an expected profit of

π1J(0, {0.9}) = r/µ = 1,

π1J(1, {0.9}) = r/µ− (cF + r/µ)βJ2 (1, {0.9}) = −0.154,

π1J(2, {0.9}) = r/µ− (cF + r/µ)
(
pJ1,2(2, {0.9}) + βJ2 (2, {0.9})

)
= −1.385.

Thus,

πJ(0, {0.9}) = max{π0J(0, {0.9}), π1J(0, {0.9})} = 1,

πJ(1, {0.9}) = max{π0J(0, {0.9}), π1J(0, {0.9})} = −0.1,

πJ(2, {0.9}) = max{π0J(0, {0.9}), π1J(0, {0.9})} = −0.913.

As shown in Figure 3.1, while π0J(k, {0.9}) and π1J(k, {0.9}) are concave in k, πJ(0, {0.9}) is
not concave in k due to the transition from acceptance to rejection as the optimal decision
when k = 1.

3.4.3 Upper Bound with Known Arrival Epochs

Due to the problem’s definition in continuous time, the inclusion of the infinite-dimensional
reservation vector in the state space makes the problem extremely difficult to solve as a
continuous-time dynamic program. Attempting to solve the problem by discretizing the
state space would still face the challenge of the number of possible combinations for the
reservation vector. Thus, we compute an upper bound in which all arrival epochs are known.

36



www.manaraa.com

If all arrival epochs ξA = {A1, A2, . . . , AJ} are known, the optimal policy can be com-
puted as a stochastic dynamic program through backwards induction. We label the value
of the solution resulting from such as procedure as OptUB. Each J arrival events and J
service start events constitute a stage of a finite-state discrete-event dynamic program in
which the number of busy rental units at each arrival epoch is the state. The action space
is {a1, a2, . . . , aJ} ∈ {0, 1}J and applies only to arrival events. We define Ej as the time
of event j, θj ∈ {A,S} as the type of event (arrival or service), and a(j) as the acceptance
decision corresponding to event j for j = 1, 2, . . . , 2J . The state at the beginning of each
stage j is k and all actions taken within τ time units prior to Ej .

For known ξA, we let π
ξA
j (k) represent the expected profit function for the jth arrival,

and define it as follows:

π
ξA
j (k) = max

a∈{0,1}


ra− cR(1− a) +

∑k
k′=0 bk′(k, F̄ (tj+1 − Ej))πξAj+1(k

′) if θj = A,

(−r − cF )1{k = y, a(j) = 1}
+
∑k+a(j)

k′=0 bk′(min{k + a(j), y}, F̄ (tj+1 − Ej))πξAj+1(min{k′, y}) if θj = S.

We use backwards recursion to solve this system and determine the optimal policy for a
system with sample path ξA.

3.4.4 Erlang Loss Performance Bounds

As τ → 0 and T →∞, the system behaves as an M/M/c/c queue with a blocking probability
Pb given by the Erlang loss formula (Erlang 1917). That is, for a system with mean service
time 1/µ and y rental units, the steady-state probability that all units are busy is

Pb :=

(
λ
µ

)y
y!∑k

i=0

(
λ
µ

)y
i!

, k = 0, 1, . . . , y.

By using this formula to estimate the service or rejection rate, we derive an upper and
lower bound on the system’s profit. As an upper bound, we consider a system in which an
omniscient decision maker accepts a reservation if and only if it will be successfully fulfilled
so that no failures occur. As a lower bound, we consider a policy in which all reservations
are accepted.

We first define the upper bound ErlUB for the profit over the rental horizon based on
an omniscient decision maker:

Proposition 3.2. The steady-state probability of the M/M/c/c queue over the horizon with
service at the end of the rental horizon provides an upper bound on the service rate; i.e.,

min
{
λT,

(
T + 1

µ

)
(1− Pb)

(
λ
µ

)}
λT

≥
E
[
NY
]

λT
.

Furthermore, the expected profit from the M/M/c/c queue with perfect admission decisions
provides the following upper bound on the expected profit:

πErlUB =
r

µ
min

{
λT,

(
T +

1

µ

)
(1− Pb)λ

}
− cR max

{
0, λT −

(
T +

1

µ

)
(1− Pb)λ

}
≥ π∗
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Proof. The proof relies on a sample path argument in which the remaining service times
of any busy rental units are resampled upon each arrival event. The key difference between
the M/M/c/c queue and our rental model is the distribution of the state of the system at
time 0. We define kErlUB(t) and k(t) as the number busy for the M/M/c/c system and our
model, respectively. For the M/M/c/c queue, it is the queue’s stationary distribution; i.e.,
kErlUB(0) ≥ 0. For our model, it begins with k(0) = 0 busy rental units, according to how
we have defined our model. By Lemma 3.1, it is clear to see that kErlUB(t) ≥ k(t) for t ≥ 0.
This implies that kErlUB(T + τ) ≥ k(T + τ), and the steady-state probabilities also provide
an upper bound on the number of rentals that receive service at the end of the horizon.

We note that we cannot simply use λTPb as an upper bound on the number of accepted
reservations, as the system starts with 0 rental units in service rather than at steady-state.
In particular, the acceptance rate for the real system would be higher than (1 − Pb) early
in the horizon. Thus, we must use the total amount of service provided over the rental
horizon for our upper bound. Over the interval [τ, T + τ ], the system is in steady state,
which corresponds to (1 − Pb)λ/µ servers busy in expectation for T time units. At time
T + τ , there are again (1 − Pb)λ/µ servers busy in expectation, and each busy server has
a remaining service time of 1/µ. Therefore, for a system that accepts reservations over a
horizon of T time units and allows any rental units in service at time T + τ to complete
service, we can compute an upper bound on the expected total service provided,(

T +
1

µ

)
(1− Pb)

(
λ

µ

)
≥

E
[
NY
]

µ

which gives an upper bound on the expected number of rental units served by dividing by
the mean service time 1/µ, (

T +
1

µ

)
(1− Pb)λ ≥ E

[
NY
]
.

Because the total expected number of arrivals over the horizon is λT , we can restrict this
expression to

min

{
λT,

(
T +

1

µ

)
(1− Pb)λ

}
≥ E

[
NY
]
.

By assuming that any reservation requests that are not accepted are rejected, we use our
upper bound on the number served to get a lower bound on the total number of rental units
that cannot be served,

max

{
0, λT −

(
T +

1

µ

)
(1− Pb)λ

}
≤ E

[
NN +NF

]
= E

[
NN

]
,

because NF = 0 for the ErlUB policy. As every reservation request that is not accepted and
successfully fulfilled is either accepted and unsuccessfully fulfilled or rejected, we assume
that all such demand is rejected to incur cost cR < cF . Thus, the expected number of
accepted reservations is maximized and the expected penalty of all unserved demand is
minimized, and πErlUB ≥ π∗.
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The M/M/c/c queueing model also allows us to provide a lower bound for the perfor-
mance of a policy ErlLB in which all reservation requests are accepted using an upper
bound on the number of reservations for which service fails.

Proposition 3.3. The steady-state probability of the M/M/c/c queue over the horizon with
service at the end of the rental horizon provides an upper bound on the rate at which accepted
reservations cannot be fulfilled; i.e.,

Pb ≥
E
[
NN

]
λT

.

Furthermore, the expected profit from the M/M/c/c queue provides the following lower bound
on the expected profit using a policy in which all reservations are accepted:

πErlLB =
r

µ
λT (1− Pb)− cFλTPb ≤ π∗.

Proof. The proof of this proposition also relies on a sample path argument and is
similar to that of Proposition 3.2. As before, the key difference between the M/M/c/c
queue and our model is the distribution of the state of the system at time 0. Using the
same sample path argument as in Proposition 3.2, we observe that kErlLB(t) ≥ k(t) for
t ≥ 0. Because the state for the M/M/c/c queue is stochastically greater than the state
of our rental system at every point in time, the rate at which arrivals are blocked for the
M/M/c/c queue exceeds the rate of failed reservations when all are accepted in our rental
model. In particular,

λTPb ≥ E
[
NF
]
,

which gives a lower bound for the service rate of

λT (1− Pb) ≤ E
[
NY
]
.

Because E
[
NY
]

= 0 in a policy in which all reservations are accepted, we combine the
bounds on the failure rate and service rate to get a lower bound on the expected profit
under a policy in which all reservations are accepted,

πErlLB =
r

µ
λT (1− Pb)− cFλTPb ≤ π∗.

3.5 Heuristics

We present simple heuristics for the acceptance decision in this section. We begin by
assuming deterministic service times and then provide a newsvendor-style heuristic that
considers whether a reservation is able to be successfully fulfilled as a random variable.

3.5.1 Policies Assuming Deterministic Service Times

We first introduce three policies in which service times are considered to be known, a
common modeling assumption in lead-time quotation literature such as Kapuscinski and
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Tayur (2007). These policies allow us to investigate the value of accounting for service time
variability.

First, in the Med policy, the remaining service times of all busy rental units at the
decision time t and the service times of all future reservations are considered to be the
median service time ln(2)/µ. Given k busy rental units at the time of the decision and
a reservation vector R, we keep track of whether each reservation i, i = 1, 2, . . . , |R|, is
successfully fulfilled with the variable ui ∈ {0, 1}. If reservation i is successfully fulfilled,
ui = 1; otherwise, ui = 0. Thus, we can define ui recursively,

uMed
i =

{
1 if k1

{
ti < t+ ln(2)

µ

}
+
∑i−1

i′=1 u
Med
i′ 1

{
ti < ti′ +

ln(2)
µ

}
< y,

0 otherwise,

where 1(·) is the indicator function. The decision to accept or reject a reservation request
is then

aMed(k,R) =

{
1 if k1{ti < t+ ln(2)

µ }+
∑|R|

i=1 u
Med
i 1{ti < ti + ln(2)

µ } < y,

0 otherwise.

Next, we describe a policy Mean that uses the mean service time 1/µ rather than the
median service time ln(2)/µ. The decision to accept or reject a reservation request is

aMean(k,R) =

{
1 if k1{ti < t+ 1

µ}+
∑|R|

i=1 u
Med
i 1{ti < ti + 1

µ} < y,

0 otherwise.

Finally, we consider the Quant policy in which the remaining lifetimes are assumed to
be constant but differ from the median as they are spread evenly over the quantiles of the
exponential distribution. Specifically, each busy unit k′, k′ = 1, 2, . . . , k, has a remaining
duration of − ln(1 − k′/(k + 1))/µ. Any reservations that start service after time t are
assumed to have service time ln(2)/µ as in the Med policy. The successful service variable
is defined as follows:

uQuanti =

{
1 if

∑k
k′=1 1 {ti < t− ln(1− k′/(k + 1))/µ}+

∑i−1
i′=1 u

Quant
i′ 1

{
ti < ti′ +

ln(2)
µ

}
< y,

0 otherwise.

The acceptance decision for the Quant policy is then

aQuant(k,R) =

{
1 if

∑k
k′=1 1 {ti < t− ln(1− k′/(k + 1))/µ}+

∑|R|
i=1 u

Quant
i 1{ti < ti + ln(2)

µ } < y,

0 otherwise.

3.5.2 A Stochastic Availability Heuristic

We now present a heuristic Avail for determining whether to accept a reservation at some
time t based on the service probability probability when the reservation would begin service.
Specifically, the state probability distribution is tracked over the upcoming τ time units to
determine the probability that at least one rental unit would be available for the reservation
under consideration. The system state evolves as over |R|+2 stages: stage 0 at time t, stage
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i corresponding to each reservation beginning service at time t+ ti for i = 1, 2, . . . , |R|, and
stage |R|+ 1 at time t|R|+1 := t+ τ when the reservation under consideration would begin
service. We let pin represent the probability that the system is in state n at the beginning
of stage i.

The starting state is based on the current number k of busy rental units, and is defined
as

p0,n = 1{k = n}.

As the event occurring at time t is merely a decision and not the start of service, the
state probability distribution immediately before event 1 depends only on the number of
reservations that complete service:

pi,n =

y∑
n′=0

p0,n′bn(n′, F̄ (t1 − t0)),

recalling that bn(n′, p) is the probability that there are n successes for a binomial random
variable with n′ trials, each of which has a success probability p. For the remainder of
the events, the state probability distribution at the beginning of each event can be defined
recursively as follows:

pi,n =

y∑
n′=0

p(i−1),n′bn(min{n′ + 1, y}, F̄ (t1 − t0)), i = 2, 3, . . . , |R|+ 1.

Thus, the probability that the system will have n busy rental units when the reservation
under consideration would start service is p|R|+1,n. We are particularly concerned with
p|R|+1,y, which is the probability that the reservation commitment is not able to be fulfilled.
The Avail heuristic can then be defined as follows:

aAvail(k,R) =

{
1 if (1− p|R|+1,y)r + cR ≥ p|R|+1,ycF ,

0 otherwise.
(3.1)

This policy can be thought of as similar to a newsvendor policy for weighing the trade-offs
of accepting and rejecting the reservation given that the reservation is the last reservation
to arrive — i.e., it is the last acceptance decision over the horizon. We make a preliminary
observation about this policy in comparison to the optimal policy. While it is identical to
the optimal policy for the last arrival — assuming the last arrival is known — the heuristic
is more likely to accept a reservation under the same circumstances at the time of a decision
as the optimal policy.

Proposition 3.4. If the optimal policy a∗j (k,R) = 1 is to accept the reservation, then the

policy from the Avail heuristic aAvailj (k,R) = 1 is to accept the reservation.

Proof. We show that aAvailj (k,R) = 0 implies that a∗j (k,R) = 0 for any j = 1, 2, . . . , y.
We write the optimal policy for any decision j′ after arrival j on any sample path as
a∗j′(ξ|aj). By Lemma 3.1 using any set of actions aj+1, aj+2, . . . , aJ , the state of the system
for aj = 1 is stochastically greater than that of aj = 0. Thus, we take the decision sequence
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Table 3.1: Simulation parameters.

Parameter Rent the Runway Redbox Railroad

Time Horizon T (days) 183 60 365
Arrival Rate λ (per week) 5 14 2.7
Mean Service Time 1/µ (days) 10 2 11.2
Notice Time τ (days) 7 2 7
Expected Revenue per Rental r/µ ($) 59 2.4 350
Rejection Penalty cR ($) 5 1 0
Service Failure Penalty cF ($) 30 or 118 20 850

a∗j+1(ξ|aj = 1), a∗j+2(ξ|aj = 1), . . . , a∗J(ξ|aj = 1) corresponding to the optimal policy on
any sample path with aj = 1, and apply it to a system with aj = 0. By Lemma 3.1, the
profit from time Aj+1 + τ onward can only increase as the expected number of accepted

reservations (i.e., E
[∑J

j′=j+1 a
∗
j′(ξ|aj = 1)

]
stays the same and the expected number of

failed reservations can only stay the same of decrease. Furthermore, relaxing the constraint
of using the decision sequence a∗j+1(ξ|aj = 1), a∗j+2(ξ|aj = 1), . . . , a∗J(ξ|aj = 1) can only
increase the value of the optimal policy.

We now consider the profit corresponding to the service of the jth arrival. Going
from aj = 1 to aj = 0 will increase the profit corresponding to the jth reservation, as
aAvailj (k,R) = 0 implies that (1−p|R|+1,y)r+cR < p|R|+1,ycF . Therefore, the expected profit
of accepting the jth reservation is negative by the system state equations. Because rejecting
the jth reservation improves the optimal expected profit corresponding to customers j, j +
1, . . . , J , aAvailj (k,R) = 0 implies that a∗j (k,R) = 0.

3.6 Numerical Results

In this section, we study the performance of the various heuristics in numerical experiments,
and use secondary system metrics to explain the difference in performance. These insights
lead to more advanced heuristics in Section 3.7. We also use the numerical results to develop
business insights about reservation policies; in particular, we show that the expected profit
is decreasing in the notice time, a relationship that runs counter to traditional insights
about advance demand information in non-rentals inventory settings.

Our experiments are primarily motivated by Rent the Runway, and we also use cases
motivated by the railcar rental business discussed in Papier and Thonemann (2010) and
Redbox, which rents movies and games through kiosks. We evaluate the impact of the
demand notice time, the number of rental units, and the penalty for failing to serve an
accepted reservation on various system metric. Key metrics include the total revenue,
total penalties, total profit, the rate at which reservations are accepted and successfully
fulfilled, the rate at which reservations are accepted but not fulfilled, and the rate at which
reservations are rejected.

Parameters for the experiments are presented in Table 3.1. The parameters used for
Rent the Runway are similar to that of the base model presented in the previous chapter.
For the mean rental time, we use a four-day rental with a conservative estimate of three
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days for shipping and cleaning before after the rental. The exponential distribution with
a mean of ten days provides a rough estimate for the rental duration when early returns,
customers who choose the eight-day rental option, customer return time variability, shipping
variability, and time required for repairs are considered. For the penalty of failing to serve
an accepted reservation, we use values equal to one-half and twice the expected net revenue
per rental.

We also evaluate our reservation acceptance heuristics in a scenario motivated by Red-
box. Based on an average transaction value of $2.49 reported in its 2013 annual report
and a $1.20 per night movie rental fee, we estimate the rental duration as exponentially
distributed with mean of two days. We set the notice time to two days. Redbox currently
accepts reservations on the day on which the rental begins if there is a movie already in
inventory that can be reserved.

Finally, we conduct an experiment using parameters from the “Type 1” model of the
railcar business described in Papier and Thonemann (2010). We limit the demand to the
customers who make reservations one week in advance, which comprise 30% of all customers.

In our simulations, generating the optimal policy for a sample path of arrivals is the
most time-intensive process. However, since we can apply the optimal policy for multiple
service time sample paths, we run multiple simulations with random service times for each
realization of demand arrival times. Specifically, we use 75 sets of replications so that the
width of the 95% confidence interval for the expected profit is within 2% of the expected
profit of the OptUB policy. In each set of replications, we generate all arrival times over the
horizon and then generate 200 replications for the service times. This strategy allows us to
reduce the number of times that we have to compute the upper bound policy. Reservations
accepted before the end of the horizon are served to completion without any reservations
being accepted after the end of the horizon.

We compare the performance of the following bounds and heuristic policies:

• OptUB. The upper bound provided by a dynamic program for a given set of arrival
times, as described in Section 3.4.3.

• Avail. The performance of a heuristic based on the probability that a rental unit will
be available at the time the reservation begins, as described in Section 3.5.2.

• Med. The performance of a heuristic that accepts reservations assuming that all
remaining service has a duration equivalent to the median service time, as described
in Section 3.5.1.

• Mean. The performance of a heuristic that accepts reservations assuming that all
remaining service has a duration equivalent to the mean service time, as described in
Section 3.5.1.

• Quant. The performance of a heuristic that accepts reservations assuming that re-
maining service times for busy rental units are evenly spread across the quantiles of
the service time distribution, as described in Section 3.5.1.

• All. The performance of a heuristic that accepts all reservations.
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Figure 3.2: Expected profit for Rent the Runway test cases as a function of the number of
rental units.

• Guar. The performance of a heuristic in which a reservation is accepted only if a
rental unit is guaranteed to be available; i.e., aGuarj (k,R) = 1{k + |R| < y}.

• ErlUB. The analytical upper bound provided by the M/M/c/c queueing model
discussed in Section 3.2.

• ErlLB. The analytical lower bound provided by the M/M/c/c queueing model dis-
cussed in Section 3.2.

3.6.1 Rent the Runway Test Cases

In Figure 3.2, we show the expected profit for the various bounds and heuristics using
different rental inventory levels for low and high failure-to-serve costs. To help explain
the differences among the policies, Figure 3.3 displays the corresponding acceptance rate
to evaluate how aggressive or conservative a policy is. Figure 3.4 shows the percentage of
accepted reservations that cannot be served, thus incurring a penalty.

We first comment on the difference between the two upper bounds, ErlUB and OptUB.
For between 2 and 10 rental units with cF = r/2µ, the ErlUB bound exceeds the OptUB
bound by between $550 and $850. This reflects the risk of failing to serve an accepted
reservation for the OptUB, as it is assumed that any reservations that are not served were
rejected in the ErlUB policy. As the number of rental units increases, the two policies
appear to converge to the same value as the reservation acceptance rate for the OptUB
converges to 100%. Because the OptUB bound dominates the ErlUB bound, we omit
showing it in the figures.

The expected profit for the OptUB bound exceeds that of the Avail heuristic by no
more than $850 for either penalty cost value. For y ≥ 6 when cF = r/2µ and y ≥ 10 when
cF = 2r/µ, the Avail heuristic achieves at least 95% of the expected profit. In all cases,
the Avail heuristic accepts a higher percentage of the reservation requests than the OptUB
heuristic, an observation that is not surprising given Proposition 3.4 for the relationship
between the Avail heuristic and the optimal policy. Naturally, it also is unable to fulfill a
higher percentage of accepted reservations. For example, when y = 8 when cF = 2r/µ, the
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Figure 3.3: Expected acceptance rate for Rent the Runway test cases as a function of the
number of rental units.
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Figure 3.4: Expected failure-to-serve rate among accepted reservations for Rent the Runway
test cases as a function of the number of rental units.

Avail heuristic accepts 89.7% of reservations but is unable serve 10.2% of the reservations.
By contrast, the OptUB bound policy only accepts 78.1% of reservations, and is unable to
serve 3.7% of the accepted reservations.

For these scenarios, the Med and Quant policies both perform almost identically to the
All policy in which all reservations are accepted. Noting that these two policies do not
change with the failure penalty cF , at least 99% of reservations are accepted for y ≥ 6.
Because τ > ln(2)/µ, the Med heuristic assumes that no rental units that are busy remain
busy when they would be needed for the reservation under consideration. The additional
spread in the remaining service times for busy rental units from the Quant policy does not
make a significant difference in the acceptance rate.

Compared the Med policy, the Mean policy has the opposite effect because τ < 1/µ.
It assumes that any busy rental units will remain busy in addition to any reservations that
begin before the reservation under consideration. Thus, it operates as a holdback policy
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in which a reservation is only accepted if there is a rental unit whose availability over the
entire notice interval is insured; i.e., the Guar policy. For a low number of rental units,
the profit from the Mean policy exceeds that of the other heuristics. When y = 2 when
cF = r/2µ, the Mean heuristic only accepts 15.9% of reservations while 28.1% are accepted
in the OptUB policy. All accepted reservations are successfully fulfilled under the Mean
heuristic compared to 73.3% for OptUB. However, as the number of rental units increases,
the Mean heuristic’s relative performance decreases. It performs worse than the heuristics
that accept all reservations for y ≥ 6 when the failure penalty is low and for y ≥ 10 when
the failure penalty is high. The poor performance of the Mean policy also indicates the
value of policies more aggressive than a holdback policy. As the number of rental units
increases, there is significant value in accepting reservations even when there is not a rental
unit guaranteed to be available.

We also study the effect of reducing the notice time from seven days to one day, as
shown in Figure 3.5. As expected, the upper bound on the expected profit increases as the
notice time decreases by approximately $200 for low cF or $500 for high cF . This reflects the
decreased uncertainty about whether a rental unit is available to serve a reservation. For the
Avail policy, the profit is within $500 of the upper bound regardless of notice time. As the
notice time decreases, the Avail, Med, and Mean policies converge to the optimal policy,
which is to only accept reservations when there is a rental unit available as τ approaches
zero. Both Med and Mean have the same performance for τ ≤ 6. For τ = 7, the Med
policy admits all reservations, which increases the expected profit for low cF and decreases
the expected profit for high cF .

Figure 3.5 indicates that the optimal profit is decreasing in the notice time, an insight
that the value of advance demand information is limited by how far in advance the infor-
mation is received. This relationship distinguishes the operation of a rental system from a
more conventional inventory system described in Hariharan and Zipkin (1995). Assuming
demand and prices do not change (or would change favorably) with the notice time, a rental
firm may benefit by reducing the notice time. In effect, this is similar to a strategy used
by some rental businesses (e.g., Redbox) of only accepting reservations up to one day in
advance.

3.6.2 Railcar and Redbox Test Cases

We next analyze the two additional test cases described above focusing on a railcar rental
business and the movie rental business Redbox. The railcar test case involves less frequent
arrivals and a high penalty for a service failure compared to Rent the Runway, and reinforces
the trends observed for the Rent the Runway case. The Avail policy achieves 83.9% of the
expected profit of the OptUB bound for y = 4, 98.6% for y = 8 and exceeds 99.9% for
y ≥ 12. The Mean, Med, and Quant heuristic policies play a similar role as τ > ln(2)/µ
and τ < 1/µ again. The Mean heuristic — a holdback policy — outperforms the other
heuristics for y ≤ 4 and is outperformed by all other heuristics for y ≥ 4. Due to the
relatively high cost of a service failure, it is not surprising that the conservative Mean,
Med, and Quant policies, which act as holdback policies, perform well for y ≤ 6.

However, the Redbox test case shows the sensitivity of the Mean, Med, and Quant
heuristics to the notice time and service rate parameters. In this case, both τ > ln(2)/µ
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Figure 3.5: Expected profit for Rent the Runway test cases as a function of the notice time
τ .
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Figure 3.6: Expected profit as a function of the number of rental units for additional test
cases.

and τ > 1/µ, which means that these three heuristics operate approximately as the All
policy in which all reservations are accepted. Because both the ratios of the arrival rate to
the service rate and the service failure penalty to the revenue per rental are high relative
to Rent the Runway, the results match our expectation that an aggressive policy would
perform poorly for low values of y. We also note that the Avail heuristic outperforms all
other heuristics for any number of rental units. Its expected profit is within $40 of that of
the OptUB policy, and it achieves at least 97.0% of the optimal upper bound for y ≥ 8.

3.7 Improvements to the Avail Heuristic

Noting that the Avail heuristic is always more aggressive than the optimal policy, we
introduce two additional heuristics that are more conservative than the Avail heuristic.
Both heuristics compare the decision to accept the jth reservation to the decision to accept
the (j + 1)st reservation. If accepting the (j + 1)st reservation is more favorable than
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accepting the jth reservation, the policy is to wait and make the same comparison upon
the next arrival. We note this does not necessarily mean that the the (j + 1)st reservation
will be accepted, as the same comparison must be made between the (j+1)st and (j+2)nd
reservations.

Because the failure-to-serve probability will always be lower for the (j+1)st reservation,
we modify the value of serving each reservation so that the heuristic does not always choose
serving the (j + 1)st reservation over the jth reservation. Specifically, we assume that the
both the jth reservation and the (j+1)st reservation complete service by some future time.
Thus, the expected revenue from serving the jth reservation is always greater than that
from serving the (j+1)st reservation, but will be less than or equal to the expected revenue
r/µ without the completion time assumption. Using p′|R|+1,y to denote the probability that

y rental units are busy at time Aj +1/λ+τ after the jth reservation was rejected, we define
two heuristics corresponding to different versions of this last completion time:

• AvailMean, which uses a last completion time of Aj + τ + 1/λ+ 1/µ so that

aAvailMean(k,R) =


1 if p|R|+1,ycF + (1− p|R|+1,y) (1− exp(−µ(1/µ+ 1/λ))) r

≥ p′|R|+1,ycF + (1− p′|R|+1,y) (1− exp(−1)) r,

0 otherwise.

(3.2)

In this comparison, the p|R|+1,ycF term represents the failure probability and cost.
The other term represents the probability of successfully serving the reservation and
the expected service time conditional on service being less than or equal to some
time duration. For the jth reservation, this duration is 1/µ+ 1/λ time units; for the
(j + 1)st reservation, this duration is 1/µ time units.

• AvailBlock, which uses a last completion time of Aj+τ+1/λ+Pb/µ and is expressed
as

aAvailBlock(k,R) =


1 if p|R|+1,ycF + (1− p|R|+1,y) (1− exp(−Pbµ(1/µ+ 1/λ))) r

≥ p′|R|+1,ycF + (1− p′|R|+1,y) (1− exp(−Pb)) r,
0 otherwise.

(3.3)

The inequality builds upon that of AvailMean by introducing the blocking probabil-
ity. Specifically, the duration by which service is assumed to have been completed is
multiplied by the blocking probability. Incorporating the blocking probability serves
to give higher weight to choosing to accept the jth reservation when the system is gen-
erally less busy. As the blocking probability increases to 1, the AvailBlock heuristic
becomes the same as the AvailMean heuristic.

We now extend our numerical testing from Section 3.6.1 to include the AvailMean
and AvailBlock heuristics, and see that the AvailBlock heuristic performs well compared
to the optimal solution. We also note that AvailBlock outperforms AvailMean under
every scenario, as depicted in Figure 3.7. As evidenced by the acceptance rates shown in
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Figure 3.7: Expected profit as a function of the number of rental units for AvailMean and
AvailBlock heuristics.
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Figure 3.8: Expected acceptance rate as a function of the number of rental units for
AvailMean and AvailBlock heuristics.

Figure 3.8, we observe that being more aggressive than AvailMean improves the expected
profit. As expected, the AvailMean and AvailBlock heuristics have a lower acceptance
rate than the Avail heuristic, and AvailBlock is more aggressive than AvailMean. We can
also see that the acceptance rate is lower than that of OptUB, which is also to be expected
as OptUB can be more aggressive given its perfect knowledge of the next arrival epoch.

The AvailBlock heuristic outperforms Avail when the number of rental units is low, but
the Avail heuristic improves upon the AvailBlock heuristic when the number of rental units
is sufficiently high. However, if Avail outperforms AvailBlock, the expected profit from
the AvailBlock heuristic still achieves at least 98.7% of the upper bound on the optimal
expected profit when the failure penalty is low and at least 94.6% of the upper bound on
the optimal expected profit when the failure penalty is high.
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3.8 Conclusions

In this chapter, we studied the reservation acceptance decision for a stochastic model of a
rental system. Rental businesses, such as Rent the Runway, in which customers need to
rent an item starting on a specific date and in which there is significant variability in the
return date provided the primary motivation for our model. We proposed a new model in
which the decision is whether to accept customers’ reservation requests in advance of their
rental start time based on the current number of busy rental units and the existing set of
accepted reservations. We discussed the challenges in proving that the optimal reservation
acceptance policy given a set of accepted reservations is a threshold policy in which it is
optimal to accept the reservation if the number of busy rental units is less than or equal to
some threshold value.

We then developed a heuristic newsvendor-style policy and studied its performance on
test cases related to Rent the Runway, a railcar rental business, and a kiosk-based movie
rental business. We compared it to lower and upper bounds based on the Erlang loss
formula and an upper bound from the optimal policy for system with known arrival epochs,
and found it to perform close to optimal except for when there are very few rental units.
Through this heuristic, we showed the value of accepting reservations even if successfully
fulfilling the reservations is not guaranteed. The simple heuristic provides decision makers
with a simple algorithm to guide reservation acceptance decisions in online setting, and
provides a starting point for providing an availability calendar.

In future work, we hope to attempt an alternate modeling framework and generalize
the model to account for other model elements. In particular, a discrete-time model similar
to Kapuscinski and Tayur (2007) with simpler (e.g., Bernoulli) demand or rental duration
distributions could allow for structural results about the optimal policy. For additional
model elements, usage-based loss as defined in Chapter 2 provides an interesting and im-
portant business feature to study. Similarly, customer no-shows or cancellations may affect
the system’s performance and could be included in the model. Finally, stochastic notice
times may be important to study for many applications. For these three possible future
paths, our heuristic policy could be easily extended, and we suspect that similar structural
results can be developed.
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Chapter 4

The Pennsylvania Adoption
Exchange Improves Its Matching
Process

With Mustafa Akan, Onur Kesten, and M. Utku Ünver

4.1 Introduction

With a goal of minimizing the number of children who “age out” of the foster care system,
state governments, county agencies, and non-profit organizations have devoted significant
resources to providing children in foster care with permanent placements in a timely manner.
Federal legislation such as the Fostering Connections to Success and Increasing Adoptions
Act of 2008 has mandated and reinforced these efforts. The state of Pennsylvania funds
the Pennsylvania Adoption Exchange (PAE), which was established in 1979 to support
county and nonprofit agencies as they attempt to find adoptive families for children who
are difficult to place due to attributes such as age or special needs. In addition to listing
children on a website and hosting in-person matching events, PAE maintains detailed data
on children and the preferences of families. PAE is mandated by the state to recommend
matches between families and children. We collaborated with managers at the Pennsylvania
Statewide Adoption and Permanency Network (SWAN), a non-profit organization responsi-
ble for administering PAE on behalf of Pennsylvania, to redesign the match recommendation
process.

PAE’s match recommendation function has two main goals. First, it helps overcome ge-
ographical and institutional barriers in the adoption search process, given Pennsylvania’s 67
counties that are supported by 82 non-profit organizations. Second, the match recommen-
dation system helps social workers search through extensive data on child characteristics
and family preferences. Furthermore, PAE managers believe that case workers sometimes
have excessively high expectations — i.e., they are waiting for the “perfect” family — so
the process has an additional goal of promoting a decision-making structure.

In this chapter, we investigate PAE to help increase the success of match attempts. Our
project contributes to an interesting and important public policy area and non-profit appli-
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cation of market design. We focus on simple changes that address PAE’s most significant
challenges, and identify key elements of the child adoption market. We have worked with
PAE to collect additional information from families and children and create a spreadsheet
matching tool that is now used by PAE staff to recommend families. While the idea of a
computerized matching tool for ranking families is not new, we believe that we are the first
to link its effectiveness to an increased rate of successful adoption through a discrete-event
simulation of the adoption network. We are also among the first to note that the match-
ing process may distort incentives for families in revealing their preferences truthfully and
propose simple remedies.

The remainder of our chapter is organized as follows. First, we provide context for
the problem of a match recommendation system as it relates to research on the design of
matching markets. We then characterize the challenges that PAE faces and assess the cur-
rent system through case worker surveys and a regression analysis using child outcome data
from 2005 to 2013. We describe how PAE recommends prospective families for children by
comparing children’s needs with family preferences on a set of approximately 100 attributes
using a spreadsheet tool. Based on this understanding of PAE’s role in the matching process,
we analyze the value of the network and the information available to the network through
a discrete-event simulation of PAE’s operation. We then discuss our recommendations for
the information that PAE collects, the decision rules for match recommendations, and the
interaction with system participants. Finally, we conclude by summarizing the implemented
improvements and possible future improvements in adoption and other similar domains.

4.2 Design of Adoption Markets

We view PAE as a two-sided matching market and rely on the market design literature to
frame our approach to the problem while using operations research and economics tech-
niques to improve the current recommendation practice. Early market design work focused
on understanding and improving centralized clearinghouses that operate in the absence of
prices and face institutional and ethical constraints. The seminal work of Gale and Shapley
(1962) introduced the formal two-sided matching framework. This theory was subsequently
advanced and adapted to important applications such as the design of the National Resi-
dency Matching Program in the US for matching medical school graduates to internships,
residencies, and fellowships at hospitals, as described by Roth and Peranson (1999). This
approach was also adapted for other applications such as the assignment of students to
public schools (Abdulkadiroğlu and Sönmez 2003) and kidney exchange (Roth et al. 2005).

The inner workings of online dating and job search markets have been documented in
more detail relative to adoptions. For example, see Lee (2007) and Hitsch et al. (2010)
for empirical assessment of sorting in online dating, and Niederle and Roth (2003) for em-
pirical assessment of the scope of job market. A common theme of these papers is that
a centralized platform; i.e., frictionless matching leads to better sorting and higher scope
with respect to traditional decentralized search with friction. Although the adoption of
children in state custody cannot be characterized as a purely centralized matching system,
our current approach has much in common with this line of research in terms of identifying
the deficiencies of an existing matching system and recommending improvements both in
elicitation of preferences and implementing the match recommendations. Similarly, more
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recent literature on market design in live-donor organ exchange has focused on introducing
new additional tools to increase the number of transplants rather than new matching algo-
rithms, such as the introduction of non-directed donor chains (see Roth et al. (2006), and
Rees et al. (2009)).

A recent strand of literature in matching market design has focused on introducing
new ideas to improve the functioning of a centralized or decentralized matching market
rather than designing new clearinghouses to conduct the matching. For example, Coles
et al. (2010) report the introduction of a signaling tool for the academic job market for
new economics PhDs. Lee et al. (2011) report an experiment to measure the effects of the
use of signaling devices on online dating. Also, a new company, OrganJet, uses private
jets to transport patients in order to overcome the inefficiencies of regionally isolated organ
donation networks (Ata et al. 2012). A related study by Arikan et al. (2012) shows that
broader sharing of the bottom 15% of kidneys (in terms of quality) from deceased donors
leads to significantly increased procurement rates for those organs.

4.3 Child Adoptions in Pennsylvania

The statewide network’s primary goal is to help find permanent families for children in
state custody. Children who fail to be placed upon initial attempts at the county level
are provided with extra services at the state level, including match recommendations from
PAE. County child welfare appropriations in Pennsylvania exceeded $1.5 billion in fiscal
year 2014-2015 (PA Department of Human Services 2015), and are largely used to sup-
port approximately 15,000 children in foster care and 2,000 children who are classified as
waiting for adoption (Children’s Bureau, U.S. Department of Health and Human Services
2014). Between 2007 and 2012, an average of 239 children per year registered to receive
match recommendations from PAE. The Office of Children, Youth and Families (OCYF) of
Pennsylvania’s Department of Human Services mandates that children without an identified
adoptive family must be registered with PAE within ninety days of termination of parental
rights (TPR).

PAE managers believe that the best scenario for children is to be placed with a perma-
nent family, even for a child who is about to reach the age of majority. For children who
are placed, the time during which the child is a legal orphan should be minimized. Fur-
thermore, the suitability of the family for the child is also important. In particular, some
families are better prepared than others to handle children with certain needs, whether
medical, behavioral, or psychological.

Prior to TPR, a county case worker seeks a suitable family for the child. If there is
no clear kinship adoption possibility or potential family within the agency’s local network,
the CYS worker may contact SWAN and request match suggestions from PAE. The case
worker must register the child with PAE in the ninety days after TPR if the worker has
not identified a resource for a child. Through working with PAE coordinators, the CYS
worker then receives between five and ten families to consider and pursue. After identifying
interested families, the worker then arranges an interview and consults with a committee
comprised of social workers and other professionals with diverse expertise to choose a family
with which to place the child. After a series of successful visits of increasing duration and
decreasing supervision, the child is placed with the family. According to Pennsylvania law,
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an adoption can then be finalized after six months.
Investigations into whether a family and child could be matched require a substantial

time investment by case workers representing the children, social workers representing the
families, and even the children and families themselves. Overburdened case workers have
limited time to review and process lengthy family profiles, and the human element of the
matching process often necessitates face-to-face meetings before a decision can be made
whether or not to pursue an adoption. Furthermore, PAE stores limited information for
use in understanding families’ preferences, and discrepancies between families’ stated and
revealed preferences can cause difficulties for selecting the best families.

4.4 Survey of Case Workers

To characterize the challenges facing PAE, we worked with a PAE manager to perform a
survey of case workers for all active children in spring 2011 to gain a broader picture of
feelings about PAE across the state. Survey recipients included both county case workers
and social workers known as “child-specific recruiters” who work for private non-profit
agencies and serve as an additional resource for county case workers in finding families
for hard-to-place children. Seventy-seven completed responses were received — forty-three
(56%) from public case workers and thirty-four (44%) from private social workers. The
survey was divided into three sections: the first set of questions was general, the second set
tried to elicit opinions about the current system, and the third aimed to assess attitudes
regarding possible changes to PAE.

The case workers were first asked to indicate the helpfulness of various avenues of find-
ing families: the centralized match recommendation system (known as “electronic match
recommendations”), inquiries from a public website (www.adoptpakids.org) that PAE uses
to promote children seeking adoptive families, decentralized lists of prospective families who
registered with non-profit organizations (“affiliates’ lists of waiting families”) with which
the worker had some connection, and in-person matching events sponsored by SWAN or
held locally. Least helpful was PAE’s centralized matching system: 65% of respondents said
that this never or rarely served as the initial source of prospective families for children who
are successfully placed. The survey’s second part gauged case workers’ satisfaction with the
centralized system. The design of this part of the survey was assisted by the information
gathered through family registration forms (CY 131) and child registration forms (CY 130).
The first set of questions in this section addressed the Resource Family Registry, which is
the database of prospective families and children seeking adoptions. Furthermore, no re-
spondents strongly agreed and only 32% agreed with the statement that “PAE does a good
job of recommending the most suitable families via electronic matches from the Resource
Family Registry for each child.” The case workers also testified to the difficulty of mak-
ing placement decisions and case worker bias. More respondents agreed or strongly agreed
(53%) than disagreed or strongly disagreed (37%) with the statement that they “know of
case workers who struggle to make placement decisions for children because of emotional
attachments to those children.” Even more respondents agreed (65%) than disagreed (23%)
with the statement that they “know of case workers whose personal preferences lead to
negative perceptions towards some families.”

Survey responses demonstrate both the ineffectiveness of the current matching system
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and the case workers’ mistrust of match recommendations from PAE. However, case workers
expressed more positive views about possible helpfulness of the registration data, with over
60% of respondents agreeing or strongly agreeing that family data is “helpful” for screening
and child data is “accurate.” This indicates the potential value of a statewide matching
network, and motivates efforts to improve PAE’s ability to help case workers find families
for children in state custody.

4.5 Analysis of Child Outcomes

We reviewed registration and outcome information about children served by PAE to better
understand adoption trends in Pennsylvania and the varying levels of difficulty in trying
to find adoptive placements. PAE managers overcame significant challenges related to the
decentralized nature of the adoption process in Pennsylvania to prepare this data set for
our use. We are the first to analyze the relationship between child outcomes and child
attributes upon registration in Pennsylvania, and the results of the analysis have provided
insights about what children might require additional adoption resources and information
to share with case workers as part of training on best practices.

Between 2005 and 2013, PAE assisted in the family-finding process for 1,853 children
seeking adoptive families. This set of children was a subset of children in state custody
with the goal of adoption; only when the matching process encounters difficulties at the
county level does the search process shift to the state level. The mean age of a child
upon registration with PAE was 9.41 years, and the median age was 9.63 years. Boys
comprised 57.8% of all PAE registrants. Of these 1,853 children, outcomes were known for
1,514 children, as 283 were still active upon the creation of the data set in May 2013, and
outcomes were missing for 56 children. Otherwise, child outcomes are known and grouped
into categories, each of which has a value between 0 and 1 that is given by PAE managers.
The most desirable outcome, a finalized adoption, has a value of 1. Emancipation, which
can be referred to as “aging out” of the system, is the least desirable outcome and has a
value of 0. Other positive outcomes include permanent guardianship arrangement (0.8) and
living with a relative (0.7), among other scenarios. An outcome of “hold” with a foster care
arrangement is considered a neutral outcome and has value of 0.5. Other negative outcomes
include placement in a residential facility (0.2) and a goal change so that the child’s case
worker is no longer seeking an adoptive placement for the child (0.1).

Of the children for whom outcome data are known, the county case worker succeeded in
finding a finalized adoptive placement for 41.4% (627 of 1,514) of children. Another 19.1%
of children have lesser positive outcomes with values of 0.7 or 0.8. Negative outcomes with
values less than or equal to 0.2 are experienced by 26.2% of children, with 12.4% of children
aging out of the system. The remaining portion (13.3%) of children have neutral outcomes.
Using the values given by PAE managers, the expected outcome value for a child in the
data set is 0.64.

We developed a linear regression model and a logistic regression model to analyze the
relationship between children’s attributes when they were registered with PAE and their
outcomes. Eighty-eight factors were created from registration data, and the outcome was
used as the dependent variable. Specifically, the outcome value was used for the linear
model and a binary variable with positive outcomes having value one and neutral and
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negative outcomes having value zero for the logit model. The square of the child’s age
upon registration was included to represent the increasing importance of age for older
children. The date of registration was expressed in the fractional number of years after
January 1, 2005. Gender was represented by a binary variable, as were whether the child
had a designation of being African-American and/or Hispanic. Another binary variable
represented whether the child had more than one race designation. Eighteen binary variables
represented the items under the sections labeled “Educational Status” and “Special Needs”
on the CY 130 forms, and an additional variable counted the number of binary variables with
positive responses. The last category of variables was 61 questions in the CY 130 section
labeled “Characteristics of Child,” with a binary variable for each question representing a
“Yes” answer. A variable that counted the number of positive responses in the section was
also used.

Starting with these 88 variables, we performed a backward stepwise procedure using the
Akaike information criterion for both the linear and logit models to select which variables
to include in the model. Linear and logit regressions were performed on the union of
the variables from these two models (Table 4.1). To roughly assess model performance
for the linear model, rounding the predicted outcome to the nearest outcome value and
classifying it as positive, negative, or neutral, the model classifies 60.0% into the correct
one of three categories. Only 8.1% of children had a positive or negative outcome that
was errantly predicted as the opposite outcome. All other prediction errors involved the
neutral outcome. When binary child outcomes are considered for the logistic models, 75%
of outcomes are correctly predicted. For children with negative/neutral outcomes, 59% were
correctly predicted, and 85% were correctly predicted for children with positive outcomes.

The child’s age upon registration plays a significant role in the regression model and
confirms that older children become increasingly difficult to place. For the linear model,
the predicted likelihood of success decreases by 0.034 per year at age eight and by 0.087
per year at age 16. The accumulative decrease in the expected outcome compared to a
newborn child is then 0.054 for an eight year-old child and 0.535 for a 16 year-old child.
Although PAE managers anticipated this general trend, they found the quantification of
this relationship to be very helpful as they instruct case workers around the state on best
practices. Specifically, they can encourage case workers to register children with the PAE
as soon as possible in the adoption process and perform a search through PAE in parallel
with family reunification or other placement efforts.

Mental retardation, which had a coefficient of -0.109 for the linear model, was the most
negative of the significant special needs factors from the “Child’s Statuses” section of the
CY 130 form for both models. Two special needs factors — having siblings and attending
school in a general education setting — had statistically significant positive coefficients
for both models. For the “Characteristics of Child” attributes, the result that surprised
PAE managers was a linear regression coefficient of -0.118 for children who use foul or bad
language, which was also significantly negative for the logit model. PAE managers found
this information valuable to share with case workers as part of training on how to identify
challenges to a successful placement. Other factors that were significantly negative with
95% confidence for both models were a difficulty accepting and obeying rules, a desired
contact with siblings, contact with birth parents, and contact with the former foster family.
The child’s gender was revealed not to have a significant effect in either model, but outcome
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Table 4.1: We choose 28 factors from the available 88 factors to model child outcomes using
ordinary least squares and logistic regression methods. Age upon registration, which is a
negative factor for children six years of age and older, was the most important factor for
predicting outcomes.

Dependent variable:

Outcome Value Outcome (Binary)

Ordinary Least Squares Logistic Freq. Import.

Constant 0.794 ∗∗∗ (0.046) 1.516 ∗∗∗ (0.372)
Age upon Registration (years) 0.020 ∗∗ (0.009) 0.102 (0.075) High
(Age upon Registration)2 -0.003 ∗∗∗ (0.0005) -0.017 ∗∗∗ (0.004) High
Registration Year (after 2005) -0.009 ∗∗ (0.004) -0.059 ∗ (0.031)
Male 0.019 (0.017) 0.100 (0.128) 57.1% High
African-American -0.034 ∗∗ (0.017) -0.198 (0.132) 42.5% High
Hispanic -0.051 ∗∗ (0.024) -0.303 ∗ (0.179) 14.1% High
SPECIAL NEEDS
Mental Retardation Diagnosis -0.109 ∗∗∗ (0.031) -0.562 ∗∗ (0.230) 9.0% High
Multiple Placement History -0.035 ∗ (0.018) -0.189 (0.137) 45.6% Medium
Drug Exposed Infant -0.020 (0.026) -0.100 (0.202) 11.6% Medium
Emotional Disability -0.019 (0.022) -0.071 (0.162) 20.2% Medium
General Education 0.064 ∗∗∗ (0.019) 0.353 ∗∗ (0.146) 37.1%
Siblings 0.085 ∗∗∗ (0.019) 0.465 ∗∗∗ (0.143) 47.3% High
CHILD CHARACTERISTICS
Blind -0.164 ∗ (0.085) -0.899 (0.611) 1.0% Medium
Uses Foul or Bad Language -0.118 ∗∗∗ (0.027) -0.613 ∗∗∗ (0.194) 15.0% Medium
History of Running Away -0.086 ∗∗ (0.043) -0.443 (0.321) 4.2% High
Desires Contact with Siblings -0.079 ∗∗∗ (0.020) -0.443 ∗∗∗ (0.152) 59.4% Low
In Contact with Former Foster Family -0.064 ∗∗∗ (0.022) -0.353 ∗∗ (0.162) 18.8% Low
Rejects Father Figures -0.061 ∗∗ (0.031) -0.345 (0.230) 8.5% Low
Difficulty Accepting and Obeying Rules -0.061 ∗∗∗ (0.022) -0.337 ∗∗ (0.160) 36.9% Low
In Contact with Birth Parents -0.058 ∗∗∗ (0.020) -0.327 ∗∗ (0.153) 26.0% Low
Num. of Characteristics Present 0.007 ∗∗∗ (0.003) 0.034 ∗ (0.020)
Parent(s) with Criminal Record 0.017 (0.018) 0.087 (0.138) 51.6% Low
Difficulty Relating to Others 0.018 (0.022) 0.101 (0.168) 31.0% Low
Speech Problems 0.024 (0.024) 0.176 (0.191) 18.4% Low
Previous Adoption or Disruption 0.038 ∗ (0.021) 0.220 (0.155) 24.1% Low
Strong Ties to Foster Family 0.041 ∗∗ (0.018) 0.226 ∗ (0.134) 54.2% Low
Vision Problems 0.042 ∗ (0.023) 0.224 (0.175) 17.1% Low
High Achiever 0.054 ∗∗ (0.025) 0.283 (0.190) 13.1% Low

Observations 1,514 1,514
R2 0.345
Adjusted R2 0.333
Akaike Inf. Crit. 1,697

Note: The values in parentheses indicate the standard deviation. Italicized variable names refer to “Characteristics
of Child” questions on CY 130 form. Also, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. “Freq.” refers to an attribute’s prevalence
among the observation. “Import.” refers to the existing default weight given to the attribute before our analysis.

value decreases of 0.034 and 0.051 (for the linear model) were expected for children with
African-American and Hispanic designations, respectively, although the logit model did not
determine designation as African-American to have a significant effect.

To understand how the regression results compare to managerial intuition about the
different factors’ relative importance, we compare them to PAE managers’ existing classifi-
cation the factors. As part of a previous attempt to create a family ranking tool that had
encountered difficulties, managers divided the factors from the CY 130 form based on their
perceived importance into groups with 15 factors as “high,” 18 factors as “medium,” and
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41 factors as “low.” Of the ten significant factors with the most negative OLS coefficient,
managers had assessed three of the factors (Hispanic, mental retardation diagnosis, and
history of running away) as of high importance and two factors (blind and uses foul or bad
language) as of medium importance. They classified the remaining five factors as of low
importance. These five factors, which include two behavioral traits and three related to a
child’s social connections, merit closer attention and a higher weight in the matching process
to help identify families more suited to a child’s needs. As a result of this analysis, they
ultimately decided to reclassify almost all significant (p < 0.1) factors with a negative OLS
coefficient as of high importance in the match assessment tool, which we will further discuss
later in the chapter. The lone exception to this rule was multiple placement history, which
remained at medium priority due to the low magnitude of its coefficient. PAE managers
particularly appreciated the suggestion to increase the importance of a factors related to
a child’s social connections, as they identified those connections as a frequent obstacles to
adoption.

PAE managers identified four other characteristics, which represent some of the most
severe behavioral needs on the CY 130 form (e.g., abusing animals), as of high importance
that did not appear as significant factors. However, increased managerial attention to
finding families related to these children’s needs might have led to their exclusion from the
final model for predicting child outcomes, and we do not make a recommendation about
whether to reduce the emphasis on these child characteristics.

4.6 Match Assessment Tool

PAE is only one of several governmental and non-profit institutions that have developed
tools to assess a possible match between a child and family. Hanna and McRoy (2011)
describe the practice of matching in adoption as a means of finding families that have the
right capabilities for handling a child’s special needs and identifying gaps in a family’s
capabilities. They emphasize the need for standardization and data collection, point to
match assessment tools as an important part of the family finding process, and review seven
different tools used in practice by public and private agencies. Although some tools use more
attributes (up to 277) than PAE, the design of PAE’s existing matching tool surpasses all
seven tools in terms of nuance in how attributes are weighted and its ambitions for helping
to find families within a statewide network.

According to its intended design — which we formally express in Algorithm 1 — PAE’s
match assessment tool computes a family’s score between 0% and 100% for a child based
on 78 pairs of child attribute values and family preferences from CY 130 and CY 131
registration forms (Table 4.2). PAE managers had assigned a number of possible points
to each of these pairs, which is 100 for items of high importance, 10 for items of medium
importance, and 1 for items of low importance. When a special need or other attribute is
not applicable or of an unknown state for a child, no points are either eligible or awarded to
each family for that attribute. We note that PAE also does not give preference to families
who say that a special need is undesirable when matching a child who does not have that
special need. This practice could create incentives for families to hide special needs that they
can accommodate if the families want to be considered for children without those special
needs. For attributes that are applicable for a child, a positive family response — a child’s
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Algorithm 1 Design of existing algorithm for computing scores for each family for a
given child.

Inputs:
1) Attribute value ck for each attribute k = 1, 2, . . . ,K corresponding to Table 4.2 for a
single child
2) Preference value fjk for each family j = 1, 2, . . . , F and each attribute k = 1, 2, . . . ,K
3) Weight wk ≥ 0 for each attribute k = 1, 2, . . . ,K
Output: Set of family matching scores {y1, y2, . . . , yF }
for j = 1 to F do

Points possible xTOTj ← 0
Points earned xj ← 0
for k = 1 to K do
if ck 6∈ {“not applicable”, “unknown”, “no”} then
xTOTj ← xTOTj + wk
if fjk = “will consider” then
xj ← xj + wk/2

else
if fjk is compatible with ck (see Table 4.2) then
xj ← xj + wk.

end if
end if

end if
end for
yj ← xj/x

TOT
j

end for
return {y1, y2, . . . , yF }
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Table 4.2: PAE managers use data on 76 attributes to recommend families for children.
Weights displayed represent weights used in the existing algorithm.

Number of Attributes
(Scoring Weight)

High Medium Low Child Attribute Values
Category (100) (10) (1) (Family Preference Values)

Child Demographics
Age 1 0 0 Current age

(Max/min age)
Race/Ethnicity 6 0 0 Applicable/not applicable

(Preferred/not preferred)
Gender 1 0 0 Male/female

(Male/female/either)
Child Status
Educational Status 0 1 0 Applicable/not applicable

(Approved/not approved)
Special Needs 6 7 0 Applicable/not applicable

(Approved/not approved)
Characteristics of Child
Health 0 3 7 Yes/no/unknown

(Acceptable/will consider/unacceptable)
Education 0 1 7 Yes/no/unknown

(Acceptable/will consider/unacceptable)
Characteristics and Behaviors 5 5 11 Yes/no/unknown

(Acceptable/will consider/unacceptable)
Connections and History 0 0 14 Yes/no/unknown

(Acceptable/will consider/unacceptable)
Contact with Birth Family 0 0 1 Yes/no/unknown

(Acceptable/will consider/unacceptable)

Note: Items in italics indicate child attribute values for which the attribute does not count
as part of the total matching score.

age within the family’s range, a matching gender, and answers of preferred, approved, or
acceptable — receives all possible points for the item. An answer of “will consider” receives
50% of the possible points. Otherwise, the family’s answer receives no points. For a specific
child, the family’s score is simply the sum of points received for their answers divided by
the sum of possible points for the child. Appendix B provides an example match score for
a child and family.

In recent years, PAE has struggled to make match recommendations that help case
workers to find and assess families. Specifically, coordinating algorithm design with an
information technology contractor and managing data collected over time across Penn-
sylvania’s 67 counties proved difficult for PAE, and child case workers received unhelpful
or illogical match recommendations as a result of a flawed implementation of Algorithm 1.
The automated match recommendations were even abandoned for a period of over two years
during which PAE coordinators manually searched through CY 130 and CY 131 forms to
provide match suggestions.

Recognizing the shortcomings of the current rules for choosing matches, we worked with
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the SWAN managers to redesign the matching tool. This resulted in a spreadsheet-based
algorithm that use PAE data about families and children to select matches. For ease of
implementation, we focused on policies that had the same form as the PAE’s match assess-
ment tool. In particular, we considered policies that are based on a point system and ranked
families according to some compatibility criteria. Rather than making specific assumptions
about the relative importance of each criteria, our method offers the PAE managers the
flexibility to select their desired weights and any other geographical constraints, as shown
in Figure B.1. To find select prospective families for a child, the spreadsheet tool computes
a ranked list of families for a child using CY 130 and CY 131 information stored in tables
elsewhere in the matching tool.

The matching algorithm that we implemented differs in two aspects from those that
have been applied in prominent centralized two-sided matching applications. First, the
algorithms studied in that literature, such as Gale and Shapley’s deferred acceptance al-
gorithm, produce a batch of “final” matches that are concurrently implemented. However,
our algorithm generates a list of mere recommendations, which may be implemented in
conjunction with the judgment of the professionals. In this sense, our approach is closer
to that adopted by the literature on semi-decentralized matching platforms such as those
for online dating and job matching. The literature on these markets almost exclusively
focuses on estimating participants preferences as opposed to increasing match success rate
and quality, which we pursue here. The second, more subtle difference is that in central-
ized matching, participants are required to rank-list all available options, whereas here such
ranking information is impossible to directly elicit because of limitations such as market
size and informational asymmetry. One main function of the above algorithm can be seen
as constructing such preferences from given pieces of information in the CY 130 and CY
131 forms and using them as the basis of recommendations.

4.7 Simulation of the Pennsylvania Adoption Exchange

To examine the impact of a simple matching tool’s effective use on the network’s overall
adoption rate, we represent PAE’s matching process as a discrete-event simulation. We
show the value of a statewide pool of families compared to a decentralized search process,
and analyze how the ability of PAE to predict a match’s success increases the number of
matches. Specifically, we model how different levels of information about child attributes
and family preferences affect the number of matches and the number of attempts before a
successful match. We rely on the results of the regression analysis from the previous section
to identify the most important child attributes for the simulation and additionally introduce
relevant family registration data to model family preferences.

As an alternative to conventional techniques such as clinical trials, which would require
many years to evaluate, discrete-event simulation has long been used to estimate the effects
of policy changes, especially organ allocation policies (cf. Ata et al. (2012)). Similarly,
our discrete-event simulation model of PAE’s operation is modular and based on input
parameters estimated with real data. Some of the simulation studies on organ allocation
use a finite-horizon model, which is necessary since the data is highly time-dependent and
reaching steady-state is very unlikely unless there is an alternative therapy for transplant
patients. However, we assume stationary parameters in our simulation model, which is
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Figure 4.1: Based on age upon registration data for 1,853 children, we simulate the child’s
age using a beta distribution and use a binomial random variable to simulate the number
of significant special needs present for each child.

justified in the context of child adoption as the population characteristics of children and
families in the system do not change dramatically over time.

The adoption network is divided into regions that constitute separate adoption networks
defined by geographical and/or institutional barriers. Children may only be adopted by
families that reside within the same region. Decreasing the number of regions to increase
the size of each region provides each separate network with more prospective families and
more children to match. We model the state of the PAE before our project as 20 separate
regions due to the ineffectiveness of the central matchmaker. In that case, each region may
correspond to a large county or a coalition of smaller counties in Pennsylvania. Because
county case workers do face geographical limitations in matching, we do not expect a perfect
centralized matchmaker to operate as a single region. Instead, managerial insights are
primarily motivated by two cases: doubling the region size — i.e., dividing the state into
10 regions instead of 20 regions — and a system with four regions corresponding to PAE
coordinators who provide match recommendations to county case workers.

4.7.1 Children

Children are defined by their age, number of special needs, and region in which they reside.
A younger child is generally preferred to an older child, and a child with fewer special needs
is generally preferable to a child with more special needs. The age attribute corresponds
to the child’s age upon registration with PAE. Using available data for the 1,853 children
who have been registered with PAE, we fit the data using the input analyzer tool of @Risk
and compared alternatives using a q-q chart. A beta distribution with shape parameters
α̂ = 5.7736 and β̂ = 4.8877 and scaled to be within the interval [−5.4648, 22.738] was
determined to produce the best fit (Figure 4.1a). In the simulation, any age values outside
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Figure 4.2: To simulate family preferences, we sample actual preferences from 2,194 regis-
tered families.

the interval [0.0, 19.0] were discarded and resampled.
The special needs attribute corresponds to a count of the presenting attributes out of the

ten child attributes that had a significant negative coefficient with a value less than -0.05
in the OLS regression analysis. This cutoff is arbitrary and used only in the simulation
analysis to designate attributes of high importance. As with age, we fit the data using
@Risk’s input analyzer, and modeled the number of special needs present as a binomial
random variable with parameters n = 14 and p = 0.16741 (Figure 4.1b). Any special needs
values greater than 10 were discarded and resampled.

The registration age and number of significant negative special needs are positively
correlated with a correlation coefficient of 0.230. Therefore, we used a Normal-To-Anything
(NORTA) process with two base vectors that have a correlation coefficient of 0.239, which
was obtained via a simulation approach. The standard multivariate normal vectors that
follow a NORTA distribution are transformed to the age and special needs distributions
using the method as described by Biller and Ghosh (2006).

The value of the child’s region attribute is a random variable uniformly distributed
over all regions. Children arrive in the system as a Poisson process with a rate of 239 per
year, which is the average number of children who were fully registered with PAE annually
between 2007 and 2012.

4.7.2 Families

Families are defined by their region of residence and their preferences for an adoptive child’s
age and maximum number of special needs, as well as the relative weight of the age pref-
erence compared to the special needs preference. They arrive to the matching system as a
Poisson process with rate 282 per year, which is the mean number of families to fully regis-
ter with PAE as approved adoption resources each year between 2007 and 2012. Managers
estimate that there are in the order of 1,000 prospective families available at any point in
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time, which implies that the expected time in system is 3.55 years by Little’s Law. Thus,
we model the family’s time in the system as an exponential random variable with a mean
of 3.55 years, as the distribution of families’ time in system is not tracked by PAE. We note
that higher number of families compared to the number of children in the system creates
a disparity in the distribution of children available to adopt and the distribution of family
preferences, which is reflected in the PAE system through children who “age out” of the
system without an adoptive placement.

We model the families’ behavior as myopic, accepting the first child that they are offered
for which their utility of a match with the child is positive. The model behind the family
acceptance decision is discussed in Appendix C. Once a family accepts a child, the family
departs from the system. The values for a child’s minimum age, maximum age, and number
of acceptable special needs are sampled together from the data on 2,194 families (Figure 4.2).
As with children, families are uniformly distributed over the regions.

4.7.3 Matching Process

We represent the matching process as a series of events that take place upon the arrival
of a child in the system, which is viewed as the driver of the matching process by PAE
managers. Matches are offered sequentially to families within the child’s region. In each
system, families are sorted according to criteria that correspond to PAE’s operation with
different levels of information. The highest-ranking family is selected and offered the child
as a match. If a family accepts a match (i.e., its utility for the match is positive), both
the family and child depart from the system. Whether a family’s utility is positive depends
on the child’s characteristics, the family’s preferences, and a random term to represent
the uncertainty of attraction. Because data is not available to estimate the randomness of
this process, we tested two values of the variability of the error term that we label as low
attraction variability and high attraction variability. If the family rejects the match, the
family remains in the system and another match — up to ten total match attempts — is
attempted for the child. For simplicity, we model the matching process as an instantaneous
event, although in practice time elapses between sequential matching attempts. If no match
is found for the child, the child departs from the system. A flowchart representing this
process is provided as Figure C.1 in Appendix C.

We present three methods for ranking families to investigate the value of information.
The three methods and their interpretations are as follows:

1. Critical Attribute (CA) represents a system in which case workers can search for
families based on either the age or special needs attribute due to constraints on their
search time and effort. We represent the matching process before our collaboration
with PAE as following the CA policy.

2. Unknown Weight (UW) represents a simple version of a centralized matching system
that is limited in its ability to properly incorporate family preference information. Age
and special needs attributes are given equal weight in this model.

3. Full Information (FI) represents an improved version of PAE’s centralized matching
system with families sorted based on a known age preference, special needs preference,
and preference weighting term.
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Figure 4.3: The child adoption rate increases with the quality of information available for
matching and decreases with the number of regions (i.e., the segmentation of the network).
Bands represent 95% confidence intervals.

4.7.4 Simulation Results

We first compare the simulated mean percentage of children matched over the five-year
horizon based on the attraction variability and number of regions for CA, UW, and FI
decision rules. The adoption rate increases with the amount of information about the
families’ preferences utilized in the match recommendation process (Figure 4.3); i.e., CA
exhibits a lower adoption rate than UW, which in turn has a rate lower than that of FI.
The UW policy only slightly improves upon the CA policy with a maximum increase of 3.9
percentage points. However, the FI policy improves on the CA policy by between 4.0 and
11.3 percentage points in the child adoption rate. Whether the attraction variability is low
or high appears to have minimal impact on the performance of the policies in terms of the
overall adoption rate.

The mean adoption rate always either increases as the number of regions decreases
or shows a statistically insignificant decrease. A completely centralized system (i.e., one
region) results in an adoption rate that is between 3.4 and 10.7 percentage points higher —
depending on the attraction variability and the recommendation rule — than the completely
decentralized case with 20 regions. This validates the role of a statewide network. With
a larger pool of families, it is more likely for a family to exist that seeks the type of child
being matched or can accommodate the child’s special needs.

In addition to an increase in the adoption rate for the UW and FI policies compared
to the CA policy, the better use of information also corresponds to a decrease in the mean
number of match attempts until a successful adoption for children who are successfully
adopted (Figure 4.4). We study this metric as a proxy for two important secondary measures
of success for the adoption network: the workload for case workers and time in system for
the child. Fewer attempts until success means less work for overburdened case workers and
a shorter time in state custody for a child. Depending on the number of regions, the UW
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Figure 4.4: Improving the information available for matching reduces the average number
of attempts before a successful adoption. Bands represent 95% confidence intervals.

and FI policies cause the mean number of match attempts until success to decrease between
32% and 41% when attraction variability is low and between 17% and 21% when attraction
variability is high.

We further investigate the effect of the attraction variability, which represents the un-
predictability of attraction between an individual family and child. When the attraction
variability is high, match success is inherently more difficult to predict, which results in an
increase in the mean number of attempts per successful adoption of up to 0.81 (Figure 4.4).
Comparing the change in the mean adoption rate as the number of regions decreases, the
difference between the low and high attraction variability cases (in relation to the cali-
bration point) is almost always less than 1%. This indicates that the underlying match
unpredictability has relatively little impact on the mean adoption rate compared to the
matching rule and number of regions. The only exceptions are for the CA policy with 1 or 2
regions when high attraction variability results in an adoption rate that is 1.0-2.0 percent-
age points higher than the adoption rate when the attraction variability is low. In these
cases, the lower match success predictive power of the CA policy for ranking families, the
high attraction variability, and the small number of regions means that it is relatively more
likely for families who are offered children later in the sequence of ten offers to be stronger
candidates.

These results justify the value of a statewide adoption network and show that the quality
of information about family preferences is critical to its success. Furthermore, we have
shown that better information improves secondary metrics of system performance that can
be interpreted as reducing case workers’ workloads and time in system for children. If the
adoption network can even just double the size of its regions so that the number of regions
is 10 instead of 20 while improving how it elicits family preferences for matching (i.e., follow
the FI policy), the number of successfully adopted children can increase by approximately
21 children per year. Additional results and managerial insights related to improvements
in match quality are discussed in Appendix C.
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4.8 Process Improvements and Results

To achieve the possible improvement in the adoption rate demonstrated in the simulation,
we worked with PAE to improve the information it collects and its family ranking tool for
matching. In this section, we discuss these changes, as well as the incentives that affect
how participants reveal their preferences. A spreadsheet matching tool in use by PAE
coordinators provides the most tangible evidence of improvements from our collaboration.
While using a computerized tool for matching is not unique to our project, we are the
first to connect the quality of preference information to the overall network adoption rate
and show how underlying incentives for how families reveal their preferences can diminish
the usefulness of recommendations. We also suggest improvements to the family ranking
algorithm that are novel to the practice of matching in child adoptions.

4.8.1 Registration Information

Through our interviews with child case workers and discussion of the simulation results,
PAE managers came to recognize new potential for gathering information during the reg-
istration process as a driver of the overall network adoption rate. Specifically, our research
collaboration has led to the collection of additional information to use in making match rec-
ommendations. Although PAE managers believed revising the CY 130 and CY 131 forms
to be an arduous process, especially since the forms had been recently revised, they are
beginning to collect child and family information through an online survey format with a
new set of questions. Their intuition about data that would be most valuable for predicting
matches informed their selection of these new questions. In particular, these new questions
focus on the child’s positive attributes, such as interests or hobbies, that might predict
attraction between children and families. Other questions focus on family attributes that
could be compared to child or child case worker preferences for families without certain pets
or other children in certain age ranges. The questions have received approval from the state
for use by PAE and are in the process of being implemented.

Furthermore, as a result of our project, PAE managers have begun tracking the results
of match recommendations for future analysis. While the set of information used for match
recommendations is currently based on managerial intuition, we have encouraged PAE to
maintain data about match attempts and their results in order to scientifically evaluate the
power of different questions to predict matches. Econometric analysis of child attributes,
family preferences, and results of match attempts would allow PAE managers to better
estimate the probability of success of a child-family match and assess which questions are
more or less important in predicting a match.

4.8.2 Spreadsheet Matching Tool

After several design and feedback iterations, PAE coordinators have begun to use our match-
ing tool prototype to suggest families to county-level case workers. The matching tool pro-
totype has also allowed them to gain insights into the matching rules and to begin to think
about what matching rules help produce the best matches for children. We have supported
the addition of features, such as geographical preferences for families, to improve the tool’s
value to PAE managers.
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Compared to other matching tools discussed in Hanna and McRoy (2011), we use the
same underlying framework of linearly weighted questions to score a family’s suitability for
a child, and add three simple innovations. First, the user can directly specify the weights for
each attribute to help determine which attributes are most important for selecting a family
for a child. PAE managers and coordinators observed that children are “labelled” by certain
special needs (e.g., fire starter, animal abuser) when the underlying behavior that prompted
the label was viewed as innocuous. They felt having the ability to adjust matching tools
weights based on knowledge of the severity of a child’s special needs could produce better
matches. This feature also allowed the easy change of default weights for factors identified
as important in the regression analysis. Second, the user can state geographical preferences
for the family’s county of residence, which can be important in assessing the feasibility of a
match if continuing community or familial relationships is important for children. Finally,
as noted in Hanna and McRoy (2011), social workers who assist families can use the tool
to identify shortcomings in the family’s capabilities for a child and prepare appropriate
support mechanisms. To this end, we have added score summaries by category so that
users can more easily identify a family’s strengths and challenges, as well as output reports
for use by the matching committee that show how the child and family compare for each
attribute.

4.8.3 Information Incentives

We also examined how families and child case workers interact with PAE to understand
intentional or unintentional behavior patterns that may reduce the matching process’s effec-
tiveness. Through conversations with PAE managers and preliminary runs of the matching
system, we noticed that the system is vulnerable to strategic manipulation by families in
how they complete their CY 131 forms. Because rejecting a child is very easy for families —
a telephone hotline is available to review details of and accept/reject an available child for
which the family is recommended — families have an incentive to overstate their willingness
to accept children with special needs. This allows a family to gain additional information
and be considered for more children. Furthermore, this behavior does not necessarily result
from conscious manipulation of the PAE system; different families may be inherently more
or less strict in how they interpret the difference between an “acceptable” and “will con-
sider” response to a specific special need. The current system gives families the incentive
to err on the side of choosing “accept,” which makes differentiating between families more
difficult for PAE.

We recommended a process change and an algorithmic feature to overcome the chal-
lenge of families’ overstating their tolerance for children with special needs. First, we rec-
ommended that matching occur in small batches so that PAE coordinators — who use the
matching tool — can observe if families are chosen too frequently and further investigate
the appropriateness of those families as recommended matches. PAE managers initially
welcomed this suggestion, and decided that monthly matching meetings would work well
with the adoption framework. They also augmented it based on their experiences with a
rule that PAE coordinators should wait 30 days between successive recommendations of
the same family. Second, the family-child match score was adjusted for three criteria —
race, age, and gender — to reward families whose preferences more closely fit the child’s
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attributes. For example, a family who indicates a preference of male or female receives a
higher score on the gender attribute than a family who indicates a preference of “either” if
the child is of the preferred gender.

Using a matchmaking experiment, we show that the rewarding of narrow preferences
more effectively spreads the recommendations over the pool of families. For each active
child, we calculated the top five matches (plus ties) from the list of active families using
a scoresheet with and without rewards for narrow preferences over age, race, and gender.
Without rewards for narrow preferences, we noticed that only 7.7% of families received at
least one match, although we should note that this number would increase in practice when
geographical preferences are applied. With rewards for narrow preferences, the number of
families who received at least one match increased by 41%. We proposed further rewarding
narrow preferences based on the number of child special needs that the family states are
acceptable, based on the acceptable number of all special needs or the ten special needs
identified as significant in the regression analysis.

Another difficulty that PAE managers emphasized is placement decision making by
child case workers. SWAN managers and even case workers themselves indicate that some
case workers also struggle with emotional attachment to children to an extent that dispas-
sionately making a placement decision according to the child’s best interests can be very
challenging. In other words, some case workers’ emotional attachment can cause them to
hold out for the “perfect” family, when another family likely to be suitable for the child
is available. PAE managers have found the spreadsheet matching tool to be valuable as
a mechanism to enforce the conceptualization of trade-offs. In conversations between case
workers and PAE coordinators who use the matching tool, observing that no family is
likely to be a 100% match can lead to discussions about the strengths and weaknesses of a
family-child match.

4.9 Conclusions

In the collaboration described in this chapter, we helped PAE improve the processes for
recommending prospective families for children in state custody. We believe that these
changes increase PAE’s value to case workers in their efforts to find find families, and will
increase the percentage of children who find permanent placements. Furthermore, PAE
has begun collecting additional data about the matching process to scientifically compare
families’ stated preferences to their actual decisions. This will enable future work that
would analyze the matching weights and relative value of the registration questions. The
challenge of making match recommendations in a two-sided matching market certainly
extends beyond the adoption of children in state custody, and insights from this chapter
may apply to matching for foster care placements.
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Chapter 5

Conclusions

The work in this thesis demonstrates the potential of operations management to contribute
to the design of important and innovative services, both in the commercial and non-profit
sectors. Insights from this work pertain to both tactical and strategic management ques-
tions, and are motivated by and have influenced practice.

Approaches grounded in stochastic inventory theory can help increase the profitability
and service levels of online rental businesses. Work in this thesis has focused on deci-
sion variables such as the pre-season inventory ordering decision, the recirculation rules
for assigning rental units to customer demands, and whether or not to accept reservation
requests. It has incorporated novel model elements of usage-based loss of rental units and
service requests by customers in advance of the service start time.

Future work on rental systems could look at additional management decisions into ac-
count or broaden the scope of the model. In-season reordering decisions provide a natural
extension of the work presented in Chapter 2, as managers might have a chance to replenish
inventory in response to lost rental units or inferences about the demand rate. Stock-out
based substitution in a multiproduct model provides a potentially valuable extension for
rental businesses. Jointly considering the inventory levels in an assortment planning prob-
lem then provides additional challenges.

Based on a variety of techniques, the insights from this thesis can also help an adoption
network increase the rate of successfully adoption children, as well as improve secondary
quality metrics such as the time until adoption and the quality of the adoptive placement.
Through a discrete-event simulation motivated by the Pennsylvania Statewide Adoption
Network, we have shown that the successful outcome rate for children depends on both the
predictive value of the information collected and the network size. This justifies the net-
work’s value and motivates efforts to expand and improve the family and child registration
data. We also used an analysis of child outcomes and family preference incentives to create
a revised match recommendation algorithm that was implemented as a spreadsheet tool.

The practice of child adoption could greatly benefit from data collection and analysis
related to family and child preferences. By observing successful and unsuccessful match
recommendations, the weights of the match recommendation could be improved to better
predict successful matches through knowledge of which criteria should be emphasized and
which should be ignored. In particular, estimates of participants’ sensitivity to geographi-
cal distances could help to inform the match recommendation algorithm and improve the

70



www.manaraa.com

understanding of the network’s value.
The challenge of making match recommendations in a two-sided matching market cer-

tainly extends beyond the Pennsylvania Adoption Exchange. Many other states, multi-state
partnerships, and non-profit organizations operate similar exchanges in which recommen-
dations can play an important role. Furthermore, the procedure for selecting foster families
as children enter the foster care system also faces similar difficulties for managing and eval-
uating prospective families but in a more compact time frame. Foster care system managers
additionally must consider the engagement of families over time and weigh trade-offs be-
tween family skill-building, family engagement, and the quality of care when placing the
child.

An important application that combines both capacity planning and non-profit oper-
ations management is nurse aide staffing in long-term care facilities. In recent efforts to
improve care provided in nursing homes, the goal of “consistent assignment” — i.e., having
the same nurse aides care for the same residents over time — has emerged as an important
pillar of person-centered care paradigms. Despite the prominence of consistent assignment
as a quality goal for nursing homes, little attention has been given to the underlying op-
erational challenges and their relationship to consistency expressed as a patient-centered
metric. In future work, we plan to study how operational staffing decisions affect both
staffing costs and consistency of care.
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Appendix A

Proofs for Chapter 2

Proof of Lemma 2.1. For notational convenience, we denote the first forward difference
Ln(y + 1, ξ) − Ln(y, ξ) by ∆Ln(y), indexing this difference to the time period n and the
initial inventory of y rental units, with the objective of comparing the inventory system with
y rental units to the system with y + 1 rental units. We also define 1(·) as the indicator
function that takes the value of one if the argument is true and zero otherwise. In addition,
∆In(y), ∆Rn(y), and ∆Wn(y) indicate the effect of increasing the value of y by one on the
available inventory to rent, the number of rentals, and the number of rental units returned,
respectively; i.e., ∆In(y) = In(y + 1, ξ) − In(y, ξ), ∆Rn(y) = Rn(y + 1, ξ) − Rn(y, ξ) and
∆Wn(y) = Wn(y + 1, ξ)−Wn(y, ξ).

In this proof, we represent the effect of a unit increase in y on the total number of
rentals in terms of the aggregate effect over all N periods; i.e., ∆R(y, ξ) =

∑N
n=1 ∆Rn(y) =∑N

n=1 ∆In(y)1(dn > In(y, ξ)) because

∆Rn(y) =

{
0 if dn ≤ In(y, ξ)

∆In(y, ξ) otherwise

by the first-forward differences of the state equations in (2.1). Thus, an additional rental unit
results in an additional rental in period n only if there is an additional rental unit available
in period n (i.e., ∆In(y, ξ)) and there is still unsatisfied demand (i.e., dn > In(y, ξ)) in
period n. We separate the summation term into two components — one for period n and
another for periods 1, 2, . . . , n− 1. We further substitute ∆In(y) with its counterpart from
the state equations in (2.1) and Wn+1(y, ξ) =

∑Amax
a=Amin

Wa,n+1(y, ξ) to obtain the following

characterization for
∑N

n=1 ∆Rn(y):

N∑
n=1

∆Rn(y) = ∆IN (y)1 (dN > IN (y, ξ)) +
N−1∑
n=1

∆Rn(y)

=

∆IN−1(y) +

Amax∑
a=Amin

∆Wa,N (y)−∆RN−1(y)

1 (dN > IN (y, ξ)) +

N−1∑
n=1

∆Rn(y).

Next, we recursively substitute ∆In(y, ξ) = ∆In−1(y, ξ) − ∆Rn−1(y, ξ) + ∆Wn(y, ξ) and
rearrange terms using ∆Rn(y) − ∆Rn(y)1 (dN > IN (y, ξ)) = ∆Rn(y)1 (dN ≤ IN (y, ξ)) to

72



www.manaraa.com

get

N∑
n=1

∆Rn(y) =

1 +
N∑
n=1

Amax∑
a=Amin

∆Wa,n(y)

1 (dN > IN (y, ξ)) +
N−1∑
n=1

∆Rn(y)1 (dN ≤ IN (y, ξ)) .

Finally, we continue by separating
∑N−1

n=1 ∆Rn(y) into ∆RN−1(y) +
∑N−2

n=1 ∆Rn(y) and re-
peating this process until all Rn(y) terms have been removed by substitution. The resulting
equation is

N∑
n=1

∆Rn(y) =
N∑
n=1

1 +
n∑
t=1

Amax∑
a=Amin

∆Wa,n(y)

1(dn > In(y, ξ))
N∏

v=n+1

1(dv ≤ Iv(y, ξ)).

In the case of experiencing at least one lost sale over the entire horizon, this expression
reduces to an equivalence between

∑N
n=1 ∆Rn(y) and 1 +

∑u
t=1 ∆Wt(y) with u = max{n ∈

{1, 2, . . . , N} : dn > In(y, ξ)}. This expression further reduces to 1+
∑u

t=1

∑Amax
a=Amin

∆Wa,u(y)
with u = max{n ∈ {1, 2, . . . , N} : dn > In(y, ξ)} when the system experiences at least one
lost sale. Thus, that E[

∑n
t=1

∑Amax
a=Amin

Wa,t(y, ξ)] is concave and non-decreasing in y for
n = 1, 2, . . . , N is a sufficient condition for the expected number of rentals E[R(y, ξ)] to be
concave and non-decreasing in y, and for the expected number of lost sales E[L(y, ξ)] to be
convex and non-increasing in y.

Proof of Proposition 2.1. We use induction to show the satisfaction of the sufficiency
condition in Lemma 2.1 for the concavity of E[R(y, ξ)] in the initial inventory of y rental
units. First, we note that there are no rental units returned in period 1. Therefore, the
sufficiency condition is trivially satisfied for n = 1. We next assume that E[

∑t
i=1Ri(y, ξ)] is

concave in y for t = 1, 2, . . . , n− 1 with n ≥ 2. What is important to recognize here is that
the expected number of returns by period n, E[

∑n
t=1

∑Amax
a=Amin

Wa,t(y, ξ)] can be written as

(1−p)
∑Amax

a=Amin
h(a)

∑n−a
t=1 E[Rt(y, ξ)]. Therefore, E[

∑n
t=1

∑Amax
a=Amin

Wa,t(y, ξ)] is a concave
function of y, and it follows from Lemma 2.1 that E[R(y, ξ)] is concave and non-decreasing
in y.

Building on this structural property of the expected number of rentals, we show the
concavity of the expected profit function in two steps: (1) The revenue acquired from
all rentals is given by

∑Amax
a=Amin

ra
∑N

n=1Ra,n(y, ξ). Because the duration of a rental that
begins in period n is independent of the durations of any rentals that begin in periods
1, 2, . . . , n − 1, it holds that E[Ra,n(y, ξ)] = h(a)E[Rn(y, ξ)]. Consequently, we obtain the

expected rental revenue as
∑Amax

a=Amin
rah(a)E[R(y, ξ)]. (2) To account for different salvage

values of lost rental units, we consider the expectation of the difference
∑N

n=1Rn(y, ξ) −∑N+Amax
n=1

∑Amax
a=Amin

Wa,t(y, ξ). Because
∑Amax

a=Amin
h(a) = 1, the expected total number of

returns E[
∑N+Amax

t=1

∑Amax
a=Amin

Wa,t(y, ξ)] := (1 − p)
∑Amax

a=Amin
h(a)

∑n−a
t=1 E[Rt(y, ξ)] can be

rewritten as (1 − p)
∑N

t=1 E[Rt(y, ξ)]. Consequently, we conclude that the expected profit

function π(y) := −kSy− cE[
∑N

n=1Dn] + (
∑Amax

a=Amin
rah(a) + c− p(kL− kS))E[R(y, ξ)] to be

concave in the initial inventory of y rental units for any rental unit recirculation rule.
Proof of Proposition 2.2. We first compare first forward differences of systems with y

rental units and y + 1 rental units to show that E
[
∆RSP (y, ξ)

]
≥ E

[
∆RSP (y + 1, ξ)

]
≥ 0
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for y ≥ 0. Since all rental units are unconditionally stochastically equivalent in terms of
their lifetimes, without loss of generality we focus on a marginal unit of inventory that has
the lowest priority for when rental units are assigned to demands. By the definition of the
static priority policy, the additional lowest-priority unit will not change the allocation of
any other rental units, implying that ∆ISPn (y, ξ(y)) ≥ 0. Thus, the forward difference of
the state equations (2.1) for the number of rentals in a period n+ 1 is

∆RSPn+1(y, ξ(y)) =

{
0 if dn+1 ≤ ISPn+1(y, ξ(y))

∆ISPn+1(y, ξ(y)) if dn+1 > ISPn+1(y, ξ(y)).

Next, we show that
∑n

t=1 ∆RSPt (y, ξ(y)) ≥
∑n

t=1 ∆RSPt (y + 1, ξ(y + 1)) by induction. For
period 1, we observe that ∆RSP1 (y, ξ(y)) ≥ ∆RSP1 (y + 1, ξ(y + 1)) due to the forward
difference of the state equations with Iγ1 (y, ξ(y)) = y and ∆Iγ1 (y, ξ(y)) = 1.

Now, we assume that
∑n−1

t=1 ∆RSPt (y, ξ(y)) ≥
∑n−1

t=1 ∆RSPt (y + 1, ξ(y + 1)) for some
period n. We account for the following cases:

1.
∑n−1

t=1 ∆RSPt (y, ξ(y)) = l′ and l′ >
∑n−1

t=1 ∆RSPt (y + 1, ξ(y + 1)): In this case, the
additional rental unit is lost before period n for the system with y rental units but is
not lost for the system with y+ 1 rental units. Because ∆RSPn (y+ 1, ξ(y+ 1)) ≤ 1 by
the state equations,

∑n
t=1 ∆RSPt (y, ξ(y)) ≥

∑n
t=1 ∆RSPt (y + 1, ξ(y + 1)).

2. l′ >
∑n−1

t=1 ∆RSPt (y, ξ(y)) and
∑n−1

t=1 ∆RSPt (y, ξ(y)) >
∑n−1

t=1 ∆RSPt (y + 1, ξ(y + 1)):
As in the previous case,

∑n
t=1 ∆RSPt (y, ξ(y)) ≥

∑n
t=1 ∆RSPt (y + 1, ξ(y + 1)) because

∆RSPn (y + 1, ξ(y + 1)) ≤ 1.

3.
∑n−1

t=1 ∆RSPt (y, ξ(y)) =
∑n−1

t=1 ∆RSPt (y+1, ξ(y+1)): If
∑n−1

t=1 ∆RSPt (y, ξ(y)) = l′ and∑n−1
t=1 ∆RSPt (y + 1, ξ(y + 1)) = l′, then the additional unit is unavailable for either

system, and
∑n

t=1 ∆RSPt (y, ξ(y)) =
∑n

t=1 ∆RSPt (y+1, ξ(y+1)) = l′. Otherwise, it suf-
fices to show that ∆ISPn (y, ξ(y)) ≥ ∆ISPn (y+1, ξ(y+1)). Let i =

∑n−1
t=1 ∆RSPt (y, ξ(y)).

By the inductive hypothesis, the ith rental of the additional unit occurred no later
for the system with y+ 1 units than the system with y+ 2 units. Thus, after a rental
duration of A′i periods, the additional unit returns to become available in an earlier
period for the system with y + 1 units than with y + 2 units, which implies that
∆ISPn (y, ξ(y)) ≥ ∆ISPn (y + 1, ξ(y + 1)).

Having shown that the change in the total number of rentals up to period n from one ad-
ditional rental unit is non-increasing in y on coupled sample paths (i.e.,

∑n
t=1 ∆RSPt (y, ξ(y)) ≥∑n

t=1 ∆RSPt (y + 1, ξ(y + 1))), we note that the property that E
[∑n

t=1 ∆RSPt (y, ξ(y))
]
≥

E
[∑n

t=1 ∆RSPt (y + 1, ξ(y + 1))
]

follows because the lifetime and rental durations of the
additional unit for the two systems being compared are independent and identically dis-
tributed. Naturally, this property implies that E

[
∆RSP (y, ξ(y))

]
≥ E

[
∆RSP (y + 1, ξ(y + 1))

]
.

Finally, we show that πSP (y) is concave and non-decreasing in y; i.e., ∆πSP (y) ≥
∆πSP (y+ 1) for y ≥ 0. To determine when the concavity of the expected number of rentals
in the initial inventory level implies the concavity of the expected profit, we must analyze
whether the (y + 1)st unit for a system with y units and the (y + 2)nd unit for a system
with y + 1 units are lost. To do so, we compare ∆ΠSP (y, ξ(y)) to ∆ΠSP (y + 1, ξ(y + 1))
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with the profit on a sample path written as

∆ΠSP (y, ξ(y)) =

Amax∑
a=Amin

(ra + c)∆RSPa (y, ξ(y))− kS − (kL − kS)1

{
n∑
t=1

∆RSPt (y, ξ(y)) ≥ l′

}
.

(A.1)

We immediately observe that ∆ΠSP (y, ξ(y)) ≥ ∆ΠSP (y + 1, ξ(y + 1)) if ∆RSP (y, ξ(y)) =
∆RSP (y+ 1, ξ(y+ 1)). If ∆RSP (y, ξ(y)) > ∆RSP (y+ 1, ξ(y+ 1)), then the expected effect
for the system with y rental units of the ∆RSP (y, ξ(y)) − ∆RSP (y + 1, ξ(y + 1)) extra
rentals of an additional unit must be non-negative. Considering the loss probability for the
extra ∆RSP (y, ξ(y))−∆RSP (y+1, ξ(y+1)) of the system with y rental units to which the
(y+ 1)st unit is being added, it suffices that

∑Amax
a=Amin

rah(a) + c ≥ (kL−kS)`i, i ≥ N/Amin
for ∆πSP (y) ≥ ∆πSP (y + 1) to hold, completing the proof.

Proof of Proposition 2.3. We first show that the forward difference of the number
of rentals is decreasing in y when the rental system follows the even spread recirculation
rule. To do so, we define a restricted allocation of rental units to a reduced demand level
d′n(y, ξ(y)) = dn − RESn,y+1(y + 1, ξ(y + 1)), n = 1, 2, . . . , N ; i.e., any unit demand served
by the (y + 1)st rental unit for the system with y + 1 units is not allowed to be satisfied
by any rental unit when the system has only y units. We denote the number of units
rented in period n with this restricted allocation by RESrn (y, ξ(y)). By definition of the
restricted allocation, we immediately recognize the equivalence between RESrn,m (y, ξ(y)) and

RESn,m(y+1, ξ(y+1)) for n = 1, 2, . . . , N and m = 1, 2, . . . , y. In other words, the satisfaction
of the ith demand by the rental unit m ∈ {1, 2, . . . , y} occurs in the same period for the
restricted system with y units and the unrestricted system with y + 1 rental units. Thus,
the addition of one rental unit with lifetime l′ and random durations {a′1, a′2, . . .} to the
system with y rental units has the same effect for the system with y + 1 rental units; i.e.,
∆RESrn (y, ξ(y)) = ∆RESn (y + 1, ξ(y + 1)). Hence, we also have

∑N
n=1 ∆RESrn (y, ξ(y)) =∑N

n=1 ∆RESn (y + 1, ξ(y + 1)).

Next, we show that
∑N

n=1 ∆RESn (y, ξ(y)) ≥
∑N

n=1 ∆RESrn (y, ξ(y)) by removing the al-
location restrictions so that the recirculation rule obeys the even spread policy and that
state equation Rγn(y, ξ) = min{dn, Iγn(y, ξ)} in each period n. Specifically, we show that∑n

t=1 ∆RESt (y, ξ(y)) is non-decreasing in {d1, d2, . . . , dn}, which implies that

n∑
t=1

∆RESn (y, ξ(y)) ≥
n∑
t=1

∆RESrt (y, ξ(y))

holds because dt ≥ d′t(y, ξ(y)) for t = 1, 2, . . . , n. In period 1, the inductive hypothesis
is true by the state equations because ∆RES1 (y, ξ(y)) = 1{d1 > y} is non-decreasing in
d1. For some period n with

∑n−1
t=1 ∆RESt (y, ξ(y)) ≥

∑n−1
t=1 ∆RESrt (y, ξ(y)), we consider the

following cases:

1. ∆RESn (y, ξ(y)) ≥ ∆RESrn (y, ξ(y)). The result follows immediately.

2. ∆RESn (y, ξ(y)) < ∆RESrn (y, ξ(y)). We must show that

n−1∑
t=1

∆RESt (y, ξ(y)) + ∆RESn (y, ξ(y)) ≥ ∆

n−1∑
t=1

RESrt (y, ξ(y)) + ∆RESrn (y, ξ(y)).
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To do so, we will demonstrate that ∆IESrn (y, ξ(y))−∆IESn (y, ξ(y)) ≤
∑n−1

t=1 ∆RESt (y, ξ(y))−∑n−1
t=1 ∆RESrt (y, ξ(y)). Each unit difference comprising ∆IESrn (y, ξ(y))−∆IESn (y, ξ(y))

can only occur when
∑n−1

t=1 ∆RESt,m(y, ξ(y)) >
∑n−1

t=1 ∆RESrt,m (y, ξ(y)) for some rental

unit m. Therefore,
∑n−1

t=1 ∆RESt (y, ξ(y)) + ∆RESn (y, ξ(y)) ≥
∑n−1

t=1 ∆RESrt (y, ξ(y)) +
∆RESrn (y, ξ(y)).

Thus, the inductive hypothesis holds to show that the value of an additional rental unit
cannot decrease with the conversion of the restricted allocation to an unrestricted allocation
while maintaining the even spread policy; i.e.,

∑N
n=1 ∆RESn (y, ξ(y)) ≥ ∆RESrn (y, ξ(y)).

Since it was also shown above that E[
∑N

n=1 ∆RESrn (y)] ≥ E[
∑N

n=1 ∆RESn (y + 1)], we see
that E[RES(y, ξ)] is concave and non-decreasing in y for the even spread recirculation
rule. Using this same argument, we observe that the expected total number of returns
E[
∑N+Amax

n=Amin+1W
ES
n (y, ξ)] is also concave and non-decreasing in y.

To prove that πES(y) is concave in y, we rewrite the profit function as

Πγ(y, ξ) =c
N∑
n=1

dn +

Amax∑
a=Amin

(ra + c− kL + kS)Rγa(y, ξ)− kSy + (kL − kS)

N+Amax∑
n=Amin+1

W γ(y, ξ).

As the sum of concave functions, the expected profit function is concave in y.
Proof of Proposition 2.4. We first focus on the proof of Step 5 listed in the text leading up

to the proposition, and begin by showing thatRS(ξ(1), ξ(2))+RS(ξ(2), ξ(1)) ≥ RV (ξ(1), ξ(2))+

RV (ξ(2), ξ(1)). First, by the increasing failure rate property and the coupling of sample
paths, we note that for a given value of η(1) or η(2), rental unit i will have a remaining
lifetime that is at least as long as that of rental unit j.

Next, we show that RS(ξ(1), ξ(2)) ≥ RV (ξ(2), ξ(1)) and RS(ξ(2), ξ(1)) ≥ RV (ξ(1), ξ(2)). We
consider each inequality separately:

• RS(ξ(1), ξ(2)) ≥ RV (ξ(2), ξ(1)): In this case, we compare the loss period of rental unit
i defined by ξ(1) in the switched allocation to rental unit j defined by ξ(1) in the
violating allocation. Due to sample path coupling, unit j has a remaining lifetime
in the violating allocation that is less than or equal to that of unit i in the switched
allocation. By induction, we can show that

∑n
t=1R

V
t (ξ(1), ξ(2)) ≤

∑n
t=1R

S
t (ξ(1), ξ(2))

for n = 1, 2, . . . , N . We omit this induction argument for its similarity to that of
Proposition 2.3.

• RS(ξ(2), ξ(1)) ≥ RV (ξ(1), ξ(2)): In this case, we compare the loss period of rental unit i
defined by ξ(2) in the switched allocation to rental unit j defined by ξ(2) in the violating
allocation. Again by sample path coupling, unit j has a remaining lifetime in the
violating allocation that is less than or equal to that of unit i in the switched allocation.
As in the previous case, we can show that

∑n
t=1R

V
t (ξ(2), ξ(1)) ≤

∑n
t=1R

S
t (ξ(2), ξ(1))

for n = 1, 2, . . . , N .

Because rental unit lifetimes and durations are independent and identically distributed,
the inequality RS(ξ(1), ξ(2)) + RS(ξ(2), ξ(1)) ≥ RV (ξ(1), ξ(2)) + RV (ξ(2), ξ(1)) implies that

E
[
RS(y)

]
≥ E

[
RV (y)

]
. Thus, under the assumption that

∑Amax
a=Amin

rah(a)+c ≥ (kL−kS)`i,
our coupling argument implies that the profit from the even spread policy is stochastically
larger than that of all other count-based recirculation rules.
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Proof of Proposition 2.5. The proof proceeds analogously to Proposition 2.3 by analyzing
the marginal effect of an additional rental unit in a sample path coupling framework for
which s̃i is the state of the additional unit after it has been rented i times. We analyze
the best-first policy BF but note that the same logic applies for the worst-first policy. We
rely on the reasoning of Proposition 2.3 but must confirm the inductive argument for the
condition-based model. Specifically, we define a restricted allocation BFr analogous to that
of Proposition 2.3 and show that the change in the number of rentals is non-decreasing as
the allocation restrictions are removed. Based on the definition of smi, the period in which
the ith allocation of a rental unit m occurs is non-decreasing as the restrictions are relaxed.
As each demand restriction is relaxed,

∑N
n=1Rn(y) either remains the same or increases

by one. Thus, the expected number of rentals can only increase with the conversion of the
restricted allocation to an unrestricted allocation while maintaining the best-first policy,
and

∑N
n=1 ∆RBFn (y) ≥

∑N
n=1 ∆RBFrn (y). Since it also holds that E[

∑N
n=1 ∆RBFrn (y)] ≥

E[
∑N

n=1 ∆RBFn (y + 1)], E[RBF (y, ξ)] is concave in y for the best-first (and worst-first)
policies. The remainder of the proof follows as in Proposition 2.3 to show that the concavity
of the expected number of rentals implies the concavity of the expected profit function.

Proof of Proposition 2.6. The proof proceeds as in Proposition 2.4 with the need to only
modify the inverse probability mass function values η(1) and η(2) for the conditional lifetime
distributions of the two rental units. For P that is totally positive of order 2 and given either
η(1) or η(2), rental unit i will always have a longer remaining lifetime (i.e., the number of
possible allocations after period n−1) than rental unit j. The remainder of the proof follows
as in Proposition 2.4. Thus, with the assumption that

∑Amax
a=Amin

rah(a)+c ≥ (kL−kS)P (i, S)
for i = 1, . . . , S − 1, the profit under the best-first recirculation rule is stochastically larger
than that of all other condition-based recirculation rules.
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Appendix B

Matching Tool Spreadsheet

Child ID (Fictitious)
Family ID (Fictitious) Earned Possible

384 425
Score 90.35%

Weight Child Info Family Pref Points Pts Possible
DEMOGRAPHIC INFORMATION

100 Age 13 100 100
Low Age 10
High Age 14

100 Race/Ethnicity
African American NA Not Preferred 0 0
Hispanic NA Not Preferred 0 0
White Applicable Preferred 100 100
American Indian/Alaskan Native NA Not Preferred 0 0
Asian NA Not Preferred 0 0
Native Hawaiian/Other Pacific Islander NA Not Preferred 0 0

100 Child Gender Female Either 100 100

SPECIAL NEEDS INFORMATION
10 Drug Exposed Infant Applicable Not Approved 0 10
10 Emotional Disability Applicable Approved 10 10

100 HIV NA Not Approved 0 0
10 MH Diagnosis NA Approved 0 0

100 MR Diagnosis NA Not Approved 0 0
10 Multiple Placement History Applicable Approved 10 10

100 Physical Disability NA Approved 0 0
10 Runaway History NA Approved 0 0

100 Sexual Abuse History NA Approved 0 0
100 Siblings NA Approved 0 0

10 Special Education Student Applicable Approved 10 10
100 Special Medical Care NA Approved 0 0

10 Abuse History Applicable Not Approved 0 10
10 Neglect History Applicable Approved 10 10

Points
Match Scoring Tool for Ranking Families

Figure B.1: PAE regional coordinators use a spreadsheet with customizable attribute
weights that automatically computes scores for all families for a given child. (“NA” refers
to an attribute that is not applicable for a child.)
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Weight CHILD CHARACTERISTICS Child Info Family Pref Points Pts Possible
1.  Does child have significant health issues? No Acceptable

1 2.  Does child have allergies or asthma? (may require treatment) Yes Acceptable 1 1
10 3.  Is child hyperactive? (may require treatment) Yes Acceptable 10 10
1 4.  Does child have speech problems? (may require treatment) No Acceptable   
1 5.  Does child have hearing problems? (may require treatment) No Acceptable   
1 6.  Is child legally deaf? No Will Consider   
1 7.  Does child have vision problems? (may require treatment) No Will Consider   
10 8.  Is child legally blind? No Unacceptable   
1 9.  Does child have dental problems? (may require treatment) No Acceptable   
1 10. Does child have orthopedic problems (special shoes, braces, etc) No Acceptable   
10 11. Does child have seizures? No Will Consider   
1 13. Is child a high achiever in school? No Acceptable   
1 14. Does child achieve at grade level in regular classes? Yes Acceptable 1 1
1 15. Does child achieve below grade level in regular classes? No Acceptable   
1 16. Is child in special education classes? No Acceptable   
1 17. Does child have a learning disability? No Acceptable   
1 18. Does child need classes for the emotionally or behaviorally handicapped? Yes Acceptable 1 1
1 19. Does child need tutoring in one or more subjects? No Acceptable   
10 20. Does child have serious behavior problems in school? Yes Will Consider 5 10
1 21. Is child generally quiet and shy? No Acceptable   
1 22. Is child generally outgoing and noisy? Yes Acceptable 1 1
1 23. Does child have emotional issues that requires therapy? Yes Acceptable 1 1
1 24. Does child tend to reject father figures? No Will Consider   
1 25. Does child tend to reject mother figures? No Will Consider   
1 26. Does child have difficulty relating to others and relating to other children? Yes Acceptable 1 1
1 27. Does child frequently wet the bed? No Acceptable   
1 28. Does child frequently soil him/herself? No Will Consider   

100 29. Does child masturbate frequently or openly? No Unacceptable   
1 30. Does child have poor social skills? Yes Acceptable 1 1
10 31. Does child have problem with lying? Yes Will Consider 5 10
10 32. Does child have problem with stealing? No Will Consider   
10 33. Does child frequently start physical fights with other children? Yes Will Consider 5 10
100 34. Does child abuse animals? No Unacceptable   
10 35. Is child destructive with clothing, toys, etc.? Yes Will Consider 5 10
10 36. Does child use foul or bad language? No Acceptable   
1 37. Does child have frequent temper tantrums? Yes Acceptable 1 1
1 38. Does child have difficulty accepting and obeying rules? Yes Acceptable 1 1

100 39. Does child exhibit inappropriate sexual behavior? No Will Consider   
100 40. Does child have a history of running away? No Will Consider   
100 41. Does child have history of playing with matches, setting fires? No Unacceptable   
1 42. Does child have strong ties to birth family? Yes Acceptable 1 1
1 43. Does child have strong ties to foster family? No Acceptable   
1 44. Is continued contact with siblings desirable? No Acceptable   
1 45. Does child have a previous adoption disruption? No Acceptable   
1 46. Was child sexually abused? No Will Consider   
1 48. Was child exposed to promiscuous sexual behavior? No Will Consider   
1 49. Was child conceived by rape? No Will Consider   
1 50.  Was child conceived as a result of prostitution? No Unacceptable   
1 51. Are one or both parents addicted to alcohol? Yes Will Consider 0.5 1
1 52. Are one or both parents dependent on substances other than alcohol? Yes Acceptable 1 1
1 53. Do one or both parents have a criminal record? Yes Acceptable 1 1
1 54. Are one or both parents mentally retarded? No Unacceptable   
1 55. Do one or both parents have a mental illness? Yes Will Consider 0.5 1
1 56. Does agency lack information about one or both parents? No Acceptable   
1 57. Is child in contact with birth parents? Yes Acceptable 1 1

58. Is child in contact with siblings? No
59. Is child in contact with extended birth family? No
60. Is child in contact with former foster family? No

Figure B.2: The spreadsheet tool also includes a section for “Child Characteristics” infor-
mation.
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Appendix C

Matching Model and Simulation
Details

Children are defined by a type c = {a, s, r}, which reflects that child’s desirability on
two attributes — age a ∈ [0, 19] years and number of significantly negative special needs
s ∈ {0, . . . , 10} — and a residence region r ∈ {1, . . . , R}, where R is the total number of
regions.

Families are defined by their type f = {aMIN , aMAX , s
′, r, α}, which represents their

range of acceptable ages [aMIN , aMAX ] with aMIN , aMAX ∈ {0, . . . , 19} and aMIN < aMAX ,
their tolerance for child special needs s′ ∈ {0, . . . , 10}, a weight α ∈ [0, 1] to express the
relative importance of age and special needs, and a region attribute r ∈ {1, . . . , R}. We
also define a utility function for the purpose of indicating whether a family will accept
an offered child. A child age component and a child special needs component comprise
the utility function, and their relative weight is dictated by the weighting term α. With
only limited information about family preferences, we use a uniform distribution for the
weighting term, as justified for preference modeling with limited information by Kennan
(2006).

We define a family’s utility for a match with a child of type c as

u(c; f) := α
(
uAGE(a, aMAX)

)
+ (1− α)

(
uSN (s, s′)

)
+ ε, (C.1)

where ε is an error term that represents the randomness of a child’s attractiveness to a
family. We let ε be an independent random variable that follows a normal distribution
with mean µ and standard deviation σ. The term σ represents families’ variability in their
attractiveness for individual children. Without data to connect families’ stated preferences
to their acceptance decisions, we consider cases of σ = 0.1 and σ = 0.2, to which we refer
as low attraction variability and high attraction variability, respectively. Given σ, µ then
becomes a tuning parameter for the simulation. The value of ε is only revealed when a
match is attempted between a family and a child.

Lacking data to directly estimate families’ preferences, we instead rely on the analysis
of factors related to child outcomes from the previous section to create a model for family
preferences. Specifically, we use the resulting coefficients from a linear regression model
based on the child’s managerially weighted outcome as a response variable and factors of
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age (linear), age (quadratic), and the number of significant negative special needs. The
resulting model is

Outcome(c) = 0.8356 + 0.0426a− 0.0045a2 − 0.0476s, (C.2)

for which the intercept and all three coefficients are significant at a 99.9% confidence level.
We use these coefficients from this model to estimate the age and special needs components
of the utility function. Given a child’s age a and a family’s preferred minimum age aMIN

and maximum age aMAX , we define the age component of a family’s utility for a child as

uAGE(a, aMIN , aMAX) :=

{
0.0426(a− aMAX)− 0.0045(a2 − a2MAX) if a ≥ aMIN

0 if a < aMIN

,

which represents the difference in the effect of age upon outcome between the child’s age
upon registration and the family’s maximum preferred age. For a family that prefers a child
between 0 and 12 years old, the age component of the utility function is 0.235 for a child
of age 4, 0.190 for age 8, and 0 for age 12. For older children, the value is -0.149 for a
child of age 14, -0.334 for age 16, and -0.554 for age 18. We note that, due to the quadratic
term, the utility component is not strictly decreasing in age for very young children, but
we ignore this effect just for simulation purposes as children younger than 3 only represent
about 6% of the population. In general, these children are not difficult to place and are not
the focus of PAE. Similarly, the special needs component of the family’s utility for a child
is defined as

uSN (s, s′) := −0.0476(s− s′),

which represents the difference in the effect of the number of significant negative special
needs and the family’s number of corresponding acceptable special needs.

With this model, we can more precisely define the three family ranking methods:

1. Critical Attribute (CA): If 0.0426a− 0.0045a2 < −0.0476s, then families are sorted
according to uAGE(a, aMIN , aMAX). Otherwise, families are sorted according to uSN (s, s′).

2. Unknown Weight (UW): Families are sorted according to their nominal utilities,
which disregards the error term, for the child with the two attributes equally weighted
(i.e., α = 0.5) to represent α unknown.

3. Full Information (FI): Families’ types are known to the matchmaker, which given a
child of type c can rank the families according to their nominal utility α

(
uAGE(a, aMAX)

)
+

(1− α)
(
uSN (s, s′)

)
.

The simulation is initialized by starting with a pool of 1,000 randomly generated fami-
lies. The replication length is five years and is preceded by a one-year warm-up period. The
family attraction variability tuning parameter is set to µ = −0.1875 for low attraction vari-
ability σ = 0.1 and µ = −0.315 for high attraction variability σ = 0.2, which corresponds to
a 64% success rate for the Critical Attribute rule and matches the expected quality-adjusted
outcome value for children in the PAE system between 2005 and 2013. We calibrated the
simulation using the CA decision rule to represent the process by which county case workers
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Child 
arrives 

Offer to ith 
ranked family 

Does 
family 
accept 
offer? 

Family departs 

How 
many 

attempts 
so far? 

Family rejects offer 

Family accepts offer 

i=10 i<10 

Child departs 
(successfully 

matched) 

Child departs 
(unmatched) Increment i by 1 

Sort families 
according to ranking 

rule. Set i = 1. 

Family 
arrives 

List of 
Families  

Child Characteristics: 
Age, number of significant negative special needs 

Family Characteristics 
Minimum and maximum acceptable age, maximum 
number of acceptable significant negative special 
needs, weighting term for utility function, maximum 
waiting time before departure 

Family departs 

Collected Statistics: 
1. Number of children matched and unmatched 
2. Number of offers until match acceptance for 

successfully adopted children 
3. Percentage of families for which child attribute 

values are above families’ stated maximum for 
each attribute 

4. Family nominal utility for each successful match 

Figure C.1: When a child becomes available, we rank prospective families and sequentially
make up to ten match attempts. A child is successfully adopted if at least one family accepts
the child. Otherwise, the child is not adopted.

manually searched through families’ records focusing on their suitability for a small subset
of child attributes, which most accurately describes PAE’s functioning before changes were
implemented as part of our collaboration. For each scenario — defined by a matching policy
and number of regions — we used 25 replications so that we are 95% confident that the
resulting mean match rate is within 1% of the true mean match rate. The simulation was
implemented in Java and relied upon the Java Simulation Library described in Rossetti
(2008) for simulation functions.
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